精英家教网 > 高中数学 > 题目详情
设命题p:实数x满足x2-4ax+3a2<0(a>0)命题q:实数x满足
x2-x-6<0
x2+2x-8>0

(1)若a=1,且p∩q为真,求实数x的取值范围
(2)若?p是?q的充分不必要条件,求a的取值范围.
分析:先分别求出命题p、q成立时,x的范围,
(1)p∩q为真,即求两范围的交集;
(2)?p是?q的充分不必要条件,等价于p是q的必要不充分条件,从而有(2,3)⊆(a,3a),由此可得a的取值范围.
解答:解:x2-4ax+3a2=0对应的根为a,3a;
由于a>0,则x2-4ax+3a2<0的解集为(a,3a),故命题p成立有x∈(a,3a);
由x2-x-6<0得x∈(-2,3),
由x2+2x-8>0得x∈(-∞,-4)∪(2,+∞),
故命题q成立有x∈(2,3).
(1)a=1时,命题p成立有x∈(1,3),
∵p∩q为真,∴实数x的取值范围是x∈(2,3);
(2)∵?p是?q的充分不必要条件,
∴p是q的必要不充分条件,
∴有(2,3)⊆(a,3a),
∵a>0
a≤2
3≤3a

∴1≤a≤2.
点评:本题考查不等式的解法,考查四种条件,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足
x2-x-6≤0
x2+2x-8>0

(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,a∈R;命题q:实数x满足x2-x-6≤0,或x2+2x-8>0,
(1)求命题p,q的解集;
(2)若a<0且?p是?q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足
x2-x-6≤0
x2+2x-8>0

(1)若a=
5
2
,若p∧q假,p∨q真,求实数x的取值范围;
(2)¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设命题p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x满足
x2-x-6≤0
|x+1|>3

(1)若a=1,且p且q为真,求实数x的取值范围;
(2)非p是非q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案