精英家教网 > 高中数学 > 题目详情

【题目】语文成绩服从正态分布,数学成绩的频率分布直方图如下:

)如果成绩大于135的为特别优秀,这500名学生中本次考试语文、数学特别优秀的大约各多少人?(假设数学成绩在频率分布直方图中各段是均匀分布的)

)如果语文和数学两科都特别优秀的共有6人,从()中的这些同学中随机抽取3人,设三人中两科都特别优秀的有人,求的分布列和数学期望.

(附参考公式)若,则

【答案】(I)语文人,数学人;(II)分布列见解析, .

【解析】试题分析:(I)根据正态分布的知识,可分别求得语文特别优秀与数学特别优秀的概率,由此可求得特别优秀语文、数学的人数;(II)首先求得所有可能的取值,然后分别求得相应概率,由此列出分布列,求出期望.

试题解析:(I)语文成绩特别优秀的概率为………………1

数学成绩特别优秀的概率为………………3

语文成绩特别优秀人数为人,

数学成绩特别优秀人数为人.……………………5

II)语文数学两科都优秀的6人,单科优秀的有10人,

所有可能的取值为01,2,3

………………10

分布列为:


0

1

2

3






………………11

数学期望………………12

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某居民区的物业部门每月向居民收取卫生费,计费方法如下:3人和3人以下的住户,每户收取5元;超过3人的住户,每超出1人加收1.2元.设计一个算法,根据输入的人数,计算应收取的卫生费,并画出程序框图.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为的函数是奇函数.

1)求的值;

(2)证明: 上的增函数;

3)若对任意的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 平面,四边形是菱形, ,且 交于点 上任意一点.

(1)求证:

(2)已知二面角的余弦值为,若的中点,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数).

(Ⅰ)若曲线在点处的切线与轴垂直,求的值;

(Ⅱ)若函数有两个极值点,求的取值范围;

(Ⅲ)证明:当时, .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,直线的方程是,圆的参数方程是为参数),以原点为极点, 轴的非负半轴为极轴建立极坐标系.

(1)分别求直线和圆的极坐标方程;

(2)射线(其中)与圆交于两点,与直线交于点,射线与圆交于两点,与直线交于点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆 上一点轴作垂线,垂足为右焦点 分别为椭圆的左顶点和上顶点,且 .

(Ⅰ)求椭圆的方程;

(Ⅱ)若动直线与椭圆交于两点,且以为直径的圆恒过坐标原点.问是否存在一个定圆与动直线总相切.若存在,求出该定圆的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点,点是直线上的动点,过作直线 ,线段的垂直平分线与交于点

(1)求点的轨迹的方程;

(2)若点是直线上两个不同的点,且的内切圆方程为,直线的斜率为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲

设函数.

(1)求解不等式的解集;

(2)若函数的定义域为R,求实数m的取值范围.

查看答案和解析>>

同步练习册答案