精英家教网 > 高中数学 > 题目详情
17.设$a=\sqrt{3}×\root{3}{3}×\root{6}{3}$.
(1)求$\sqrt{{{({{a^{-1}}-1})}^2}}$的值;
(2)若$\root{3}{b}×\root{6}{-b}=-a$,求b的值.

分析 首先将根式化为负数指数幂,然后又要指数幂的运算求出a;分别代入(1,)(2)化简求值即可.

解答 解:由已知得到a=${3}^{\frac{1}{2}}×{3}^{\frac{1}{3}}×{3}^{\frac{1}{6}}$=${3}^{\frac{1}{2}+\frac{1}{3}+\frac{1}{6}}=3$,
所以(1)$\sqrt{{{({{a^{-1}}-1})}^2}}$=$\sqrt{(\frac{1}{3}-1)^{2}}$=$\frac{2}{3}$;
(2)$\root{3}{b}×\root{6}{-b}=-a$=-${(-b)}^{\frac{1}{3}}(-b)^{\frac{1}{6}}$=-$(-b)^{\frac{1}{2}}$=-3,解得-b=9,即b=-9.

点评 本题考查了根式与负数指数幂的互化与化简;属于基础题;特别注意符号.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.为了防止受污染的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮检测,只有两轮都合格才能进行销售,否则不能销售,已知某产品第一轮检测不合格的概率为$\frac{1}{6}$,第二轮检测不合格的概率为$\frac{1}{10}$,两轮检测是否合格相互独立.
(1)求该产品不能销售的概率;
(2)如果产品可以销售,则每台产品可获利40元,如果产品不能销售,则每台产品亏损80元(即获利-80元),已知一箱有产品4件,记一箱产品获利X元,求X的分布列及数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在约束条件|x+1|+|y-2|≤3下,目标函数z=x+2y的最大值为9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设集合A={1,2},B={2,a},若A∪B={1,2,4},则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设$f(x)=\left\{\begin{array}{l}2x+a,x<0\\ x+1,x≥0\end{array}\right.$,若f(x)是单调函数,则a的取值范围为(-∞,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知复数z=$\frac{4+i}{1+2i}$,则z在复平面上对应的点在第(  )象限.
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,且对任意正整数n,都有an=$\frac{3}{4}{S_n}$+2成立.记bn=log2an. 
(1)求数列{an}和{bn}的通项公式;
(2)设cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,数列{cn}的前n项和为Tn,求证:$\frac{1}{15}≤{T_n}<\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=2cosx(sinx-cosx)+1的定义域为[a,b],值域为$[{-\sqrt{2},\frac{{\sqrt{2}}}{2}}]$,则b-a的值不可能是(  )
A.$\frac{5π}{12}$B.$\frac{π}{2}$C.$\frac{7π}{12}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知B(m,2b)是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=l(a>0,b>0)的右支上一点,A为右顶点,O为坐标原点,若∠AOB=60°,则该双曲线的渐近线方程为(  )
A.y=±$\frac{{\sqrt{10}}}{2}x$B.y=±$\frac{{\sqrt{13}}}{2}x$C.y=±$\frac{{\sqrt{15}}}{2}x$D.y=±$\frac{{\sqrt{19}}}{2}x$

查看答案和解析>>

同步练习册答案