精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在实数集R上的函数,给出下列结论:
①若存在常数x0,使f′(x)=0,则函数f(x)必在x0处取得极值;
②若函数f(x)在x0处取得极值,则函数f(x)在x0处必可导;
③若函数f(x)在R上处处可导,则它有极小值就是它在R上的最小值;
④若对于任意x≠x0都有f(x)>f(x0),则f(x0)是函数f(x)的最小值;
⑤若对于任意x<x0有f′(x)>0,对于任意x>x0有f′(x)<0,则f(x0)是函数f(x)的一个最大值;
其中正确结论的序号是 ______.
导数等于0的值不一定是极值,要注意验证导数为0处左右的函数的单调性确定是否极值,故①不正确
极值点只能在函数不可导的点或导数为零的点中取,故②不正确
根据极小值不止一个,极值只是相对于一点附近的局部性质,故极小值就是它在R上的最小值是错的,故③不正确
最值是相对整个定义域内或所研究问题的整体的性质,根据函数最小值的定义可知④正确
连续函数在R内只有一个极值,那么极大值就是最大值,故⑤正确
故答案为:④⑤
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)计算:[f(1)]2-[g(1)]2
(2)证明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=x+
a
x
的定义域为(0,+∞),且f(2)=2+
2
2
.设点P是函数图象上的任意一点,过点P分别作直线y=x和y轴的垂线,垂足分别为M、N.
(1)求a的值.
(2)问:|PM|•|PN|是否为定值?若是,则求出该定值;若不是,请说明理由.
(3)设O为坐标原点,求四边形OMPN面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1y1),N(x2y2)
是f(x)图象上的两点,横坐标为
1
2
的点P满足2
OP
=
OM
+
ON
(O为坐标原点).
(Ⅰ)求证:y1+y2为定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn为数列{an}的前n项和,若Tn<m(Sn+1+1)对一切n∈N*都成立,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)图象上的两点,且x1+x2=1.
(1)求证:y1+y2为定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn
(3)在(2)的条件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn为数列{an}的前n项和.求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直线y=m与两个相邻函数的交点为A,B,若m变化时,AB的长度是一个定值,则AB的值是(  )

查看答案和解析>>

同步练习册答案