精英家教网 > 高中数学 > 题目详情
3.北京某旅行社为某旅行团包机去旅游,期中旅行社的包机费为12000元,旅行团中每人的飞机票按以下方式与旅行社结算:若旅行社的人数在30人或30人以下,则每张机票收费800元;若旅行社的人数多于30人,则给予优惠,每多一张,旅行社每张机票减少20元,但旅行社的人数最多不超过45人.
(1)写出旅行社获得的机票利润y(元)与旅行团的人数x(人)之间的函数关系式;
(2)求出当机票利润最大时旅行社的人数,并求出最大利润.

分析 (1)设旅行团的人数为x人,每张机票收费为m元,旅行社获得的机票利润为y,根据条件建立函数关系;
(2)利用分段函数,结合一元二次函数的性质即可得到结论.

解答 解:(1)设旅行团的人数为x人,每张机票收费为m元,旅行社获得的机票利润为y,
当1≤x≤30且x∈N时,m=800,y=800x-12000
当30<x≤45且x∈N时,m=800-20(x-30)=1400-20x,y=(1400-20x)x-12000=-20x2+1400-12000,
∴y=$\left\{\begin{array}{l}{800x-12000(1≤x≤30且x∈N)}\\{-20{x}^{2}+1400x-12000(30<x≤45且x∈N)}\end{array}\right.$.
(2)当1≤x≤30且x∈N时,ymax=800×30-12000=12000元
当30<x≤45且x∈N时,当x=35时,ymax=12500元
所以当旅行社人数为35时,旅行社可获得最大利润,最大利润12500元.

点评 本题考查函数的应用问题,考查函数的最大值的应用,根据条件建立函数关系,利用一元二次函数的最值性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.用数学归纳法证明:(1+α)n≥1+nα(其中α>-1,n是正整数).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆C:x2+y2+2x-4y+1=0的圆心在直线ax-by+1=0上,则ab的取值范围是(  )
A.(-∞,$\frac{1}{4}$]B.(-∞,$\frac{1}{8}$]C.(0,$\frac{1}{4}$]D.(0,$\frac{1}{8}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若f(${x^{-\frac{2}{3}}}$)=${log_2}^x$则f($\frac{1}{2}$)的值等于=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足条件:a1=1,an+1=2an+1
(1)求数列an的通项公式
(2)令${c_n}=\frac{2^n}{{{a_n}•{a_{n+1}}}}$记Tn=c1+c2+c3+…+cn  求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.给出下列说法:
(1)y=tanx既是奇函数,也是增函数
(2)y=2${\;}^{-{x}^{2}+2x}$的值域为(-∞,2].
(3)若y=f(2x)的定义域为[1,2],则y=f(x-1)的定义域为[3,5].
(4)全集U={(x,y)|x,y∈R},M={(x,y)|$\frac{y-3}{x-2}$=1},N={(x,y)|y-3=x-2},则(∁UM)∩N={(2,3)}.
(5)方程3sin$\frac{π}{2}x={log_{\frac{1}{2}}}$x有3个实数根.
(6)函数y=lgsin($\frac{π}{3}$-2x)的单调递增区间为(kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$),(k∈Z).
以上正确的说法有(  )个.
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知定义在R上的奇函数f(x)=1-$\frac{a}{{2}^{x}+1}$,若0<x≤1,都有k×f(x)≥2x-1成立,则k的取值范围是[3,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=sin($\frac{π}{3}$+4x)+cos(4x-$\frac{π}{6}$)
(1)求f(x)的最小正周期;
(2)求f(x)的单调区间;
(3)当x∈[0,$\frac{π}{4}$]时,求f(x)的最大值、最小值,及其取得最值时自变量的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.方程sin4x=sin2x在$(0,\frac{3}{2}π)$上的解集是$\left\{{\frac{π}{6},\frac{π}{2},π,\frac{5π}{6},\frac{7π}{6}}\right\}$.

查看答案和解析>>

同步练习册答案