精英家教网 > 高中数学 > 题目详情

【题目】求满足下列条件的曲线方程

1)已知椭圆以坐标轴为对称轴,且长轴长是短轴长的3倍,点在该椭圆上,求椭圆的方程.

2)已知双曲线的离心率为,焦点是,求双曲线标准方程.

【答案】(1).

【解析】

1)根据焦点坐标的位置不同,结合题意,分类讨论即可求得;

2)设出双曲线方程,根据离心率和焦点坐标即可求得.

1)当椭圆的焦点在轴上时,设椭圆方程为

由题可知,又因为长轴长是短轴长的3倍,则,

则椭圆方程为:

当椭圆的焦点在轴上时,设椭圆的方程为

由题可知,又因为长轴长是短轴长的3倍,则

则椭圆方程为.

综上所述,椭圆方程为.

(2)由题可知,双曲线是等轴双曲线,且焦点在轴上,

故可设双曲线方程为

又因为焦点是

故可得,解得

故双曲线方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,线段AB=8,点C在线段AB上,且AC=2,P为线段CB上一动点,点A绕着C旋转后与点B绕点P旋转后重合于点D,设CP=x,CPD的面积为f(x).求f(x)的最大值(  ).

A.     B. 2

C.3     D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线 ,其焦点到准线的距离为2,直线与抛物线交于两点,过分别作抛物线的切线交于点.

(Ⅰ)求的值;

(Ⅱ)若,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数f(x)=|xa|+|x-2|.

(1)a=-3时,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年春节期间.当红彩视明星翟天临“不知“知网””学术不端事件在全国闹得沸沸扬扬,引发了网友对亚洲最大电影学府北京电影学院、乃至整个中国学术界高等教育乱象的反思.为进一步端正学风,打击学术造假行为,教育部日前公布的《教育部2019年部门预算》中透露,2019年教育部拟抽检博士学位论文约6000篇,预算为800万元.国务院学位委员会、教育部2014年印发的《博士硕士学位论文抽检办法》通知中规定:每篇抽检的学位论文送3位同行专家进行评议,3位专家中有2位以上(含2位)专家评议意见为“不合格”的学位论文.将认定为“存在问题学位论文”。有且只有1位专家评议意见为“不合格”的学位论文,将再送2位同行专家进行复评.2位复评专家中有1位以上(含1位)专家评议意见为“不合格”的学位论文,将认定为“存在问题学位论文”。设毎篇学位论文被毎位专家评议为“不合格”的槪率均为,且各篇学位论文是否被评议为“不合格”相互独立.

(1)记一篇抽检的学位论文被认定为“存在问题学位论文”的概率为,求

(2)若拟定每篇抽检论文不需要复评的评审费用为900元,需要复评的评审费用为1500元;除评审费外,其它费用总计为100万元。现以此方案实施,且抽检论文为6000篇,问是否会超过预算?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2aln x(aR).

(1)f(x)x=2处取得极值,求a的值;

(2)f(x)的单调区间;

(3)求证:当x>1时, x2+ln x<x3.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别为内角的对边.已知,且,则( )

A. 1B. 2C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,直线经过椭圆的左焦点.

(1)求椭圆的标准方程;

(2)若直线轴交于点是椭圆上的两个动点,且它们在轴的两侧,的平分线在轴上,|,则直线是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 已知函数f(x)=|xa|+|x-2|.

(1)a=-3时,求不等式f(x)≥3的解集;

(2)f(x)≤|x-4|的解集包含[1,2],求a的取值范围.

查看答案和解析>>

同步练习册答案