精英家教网 > 高中数学 > 题目详情
已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=
3
2
,点P为椭圆上一动点,点F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为
3

(1)求椭圆C1的方程;
(2)设椭圆短轴的上端点为A,点M为动点,且
1
5
|
F2A
|2
1
2
F2M
AM
AF1
OM
成等差数列,求动点M的轨迹C2的方程.
分析:(1)设出椭圆的方程,利用离心率和a,b与c的关系求得a和b的关系,根据椭圆的几何性质知,当点P为椭圆的短轴端点时,△PF1F2的面积最大,进而求得bc的关系,最后联立求得a和b,则椭圆的方程可得.
(2)根据(1)中的方程求得A和两焦点坐标,设出M的坐标,利用
F2A
F2M
AM
AF1
根据已知条件求得x和y的关系,点M的轨迹方程可得.
解答:解:(1)设椭圆C1的方程为
x2
a2
+
y2
b2
=1(a>b>0),c=
a2-b2
,则
c
a
=
3
2
,所以a=2b、
由椭圆的几何性质知,当点P为椭圆的短轴端点时,
△PF1F2的面积最大,故
1
2
|F1F2|b=bc=
3

解得a=2,b=1.
故所求椭圆方程为
x2
4
+y2=1.
(2)由(1)知A(0,1),F1(-
3
,0),F2
3
,0),
设M(x,y),则
F2A
=(-
3
,1),
F2M
=(x-
3
,y),
AM
=(x,y-1),
AF1
=(-
3
,-1).
由已知条件得x(x-
3
)+y(y-1)=
4
5
-
3
x-y,整理,得M的轨迹C2的方程为x2+y2=
4
5
点评:本题主要考查了直线与圆锥曲线的综合问题.考查了基础知识的整体把握和综合运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C1的中心在坐标原点,两个焦点分别为F1(-2,0),F2(2,0),点A(2,3)在椭圆C1上,求椭圆C1的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心在原点,离心率为
4
5
,焦点在x轴上且长轴长为10.过双曲线C2
x2
a2
-
y2
b2
=1(a>0,b>0)
右焦点F2作垂直于x轴的直线交双曲线C2于M、N两点.
(I)求椭圆C1的标准方程;
(II)若双曲线C2与椭圆C1有公共的焦点,且以MN为直径的圆恰好过双曲线的左顶点A,求双曲线C2的标准方程;
(III)若以MN为直径的圆与双曲线C2的左支有交点,求双曲线C2的离心率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1的中心在原点,焦点在y轴上,离心率为
5
3
,且经过点M(
3
3
2
)

(Ⅰ)求椭圆C1的方程;
(Ⅱ)已知椭圆C2的长轴和短轴都分别是椭圆C1的长轴和短轴的m倍(m>1),中心在原点,焦点在y轴上.过点C(-1,0)的直线l与椭圆C2交于A、B两个不同的点,若
AC
=2
CB
,求△OAB的面积取得最大值时的直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•济宁一模)已知椭圆C1的中心在坐标原点O,焦点在x轴上,离心率为e=
3
2
,P
为椭圆上一动点,F1、F2分别为椭圆的左、右焦点,且△PF1F2面积的最大值为
3

(1)求椭圆C1的方程;
(2)设椭圆短轴的上端点为A、M为动点,且
1
5
|
F2A
|2
1
2
F2M
AM
AF1
OM
成等差数列,求动点M的轨迹C2的方程;
(3)过点M作C2的切线l交于C1与Q、R两点,求证:
OQ
OR
=0

查看答案和解析>>

同步练习册答案