精英家教网 > 高中数学 > 题目详情

【题目】中国古代的四书是指:《大学》、《中庸》、《论语》、《孟子》,甲、乙、丙、丁名同学从中各选一书进行研读,已知四人选取的书恰好互不相同,且甲没有选《中庸》,乙和丙都没有选《论语》,则名同学所有可能的选择有______.

【答案】

【解析】

分两种情况讨论:(1)乙、丙两人中没有一人选《中庸》;(2)乙、丙两人中有一人选《中庸》,利用排列组合思想计算出每种情况下选法种数,利用分类加法计数原理可求得结果.

分以下两种情况讨论:

1)乙、丙两人中没有一人选《中庸》,则乙、丙两人在《大学》、《孟子》中各选一书,则甲只能选《大学》,丁只能选《论语》,此时选法种数为种;

2)乙、丙两人中有一人选《中庸》,则另一人可在《大学》、《孟子》选择一书,甲、丁两人选书时没有限制,此时选法种数为.

综上所述,名同学所有可能的选择种数为.

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM 5 m,BC 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH

(1)求屋顶面积S关于的函数关系式;

(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当为何值时,总造价最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数fx=|x-m|-|2x+2m|m0).

(Ⅰ)当m=1时,求不等式fx)≥1的解集;

(Ⅱ)若xRtR,使得fx+|t-1||t+1|,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,函数

)求函数的单调区间;

)求函数上的最小值

)若,求使方程有唯一解的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某村共有100户农民,且都从事蔬菜种植,平均每户的年收入为2万元.为了调整产业结构,该镇政府决定动员部分农民从事蔬菜加工.据估计,若能动员户农民从事蔬菜加工,则剩下的继续从事蔬菜种植的农民平均每户的年收入比上一年提高,而从事蔬菜加工的农民平均每户的年收入为万元.

1)在动员户农民从事蔬菜加工后,要使从事蔬菜种植的农民的总年收入不低于动员前100户农民的总年收入,求的取值范围;

2)在(1)的条件下,要使这100户农民中从事蔬菜加工的农民的总年收入始终不高于从事蔬菜种植的农民的总年收入,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中为奇函数的是(

A.yx22xB.yx2cosxC.y2x+2xD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱柱ABCA1B1C1的所有棱长都相等,平面BB1C1C⊥平面ABCBC1C1C

1)求证:A1B⊥平面AB1C1

2)求二面角A1AC1B1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的个数为(

(1)是直线和直线垂直的充要条件;

(2)在线性回归方程中,相关系数越大,变量间的相关性越强;

(3)已知随机变量,若,则

(4)若命题,,则,

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新冠肺炎疫情造成医用防护服紧缺,当地政府决定为防护服生产企业A公司扩大生产提供(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服.A公司在收到政府x(万元)补贴后,防护服产量将增加到(万件),其中k为工厂工人的复工率A公司生产t万件防护服还需投入成本(万元).

1)将A公司生产防护服的利润y(万元)表示为补贴x(万元)的函数;

2)对任意的(万元),当复工率k达到多少时,A公司才能不产生亏损?(精确到0.01

查看答案和解析>>

同步练习册答案