精英家教网 > 高中数学 > 题目详情

【题目】一名战士在一次射击中,命中环数大于8,大于5,小于4,小于6这四个事件中,互斥事件有(

A.2B.4C.6D.3

【答案】B

【解析】

根据互斥事件定义即可判断出.

按照互斥事件的定义,两个事件不可能同时发生,

所以命中环数大于8与命中环数小于4是互斥事件;

命中环数大于8与命中环数小于6是互斥事件;

命中环数大于5与命中环数小于4是互斥事件;

命中环数大于5与命中环数小于6是互斥事件.

故选:B.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校随机抽取部分新生调查其上学路上所需时间单位:分钟,并将所得数据绘制成频率分布直方图如图,其中,上学路上所需时间的范围是,样本数据分组为.

1求直方图中的值;

2如果上学路上所需时间不少于60分钟的学生可申请在学校住宿,请估计学校1000名新生中有多少名学生可以申请住宿;

3现有6名上学路上时间小于分钟的新生,其中2人上学路上时间小于分钟. 从这6人中任选2人,设这2人中上学路上时间小于分钟人数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,解关于的不等式

(2)若关于的不等式的解集是,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,侧面是正三角形,且与底面垂直,底面是边长为2的菱形, 的中点,过三点的平面交 的中点,求证:

(1)平面

(2)平面

(3)平面平面.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某城市有一块半径为40的半圆形(以为圆心,为直径)绿化区域,现计划对其进行改建,在的延长线上取点,使,在半圆上选定一点,改建后的绿化区域由扇形区域和三角形区域组成,其面积为,设.

(1)写出关于的函数关系式,并指出的取值范围;

(2)试问多大时,改建后的绿化区域面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是公差为正数的等差数列,其前项和为,且.

(1)求数列的通项公式;

(2)数列满足.

求数列的通项公式;

是否存在正整数,使得成等差数列?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某小区随机抽取40个家庭,收集了这40个家庭去年的月均用水量(单位:吨)的数据,整理得到频数分布表和频率分布直方图.

(1)求频率分布直方图中的值;

(2)从该小区随机选取一个家庭,试估计这个家庭去年的月均用水量不低于6吨的概率;

(3)在这40个家庭中,用分层抽样的方法从月均用水量不低于6吨的家庭里抽取一个容量为7的样本,将该样本看成一个总体,从中任意选取2个家庭,求其中恰有一个家庭的月均用水量不低于8吨的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,命题,命题

时,试判断命题是命题的什么条件;

的取值范围,使命题是命题的一个必要但不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为数列的前项和,对任意的,都有为正常数).

(1)求证:数列是等比数列;

(2)数列满足,求数列的通项公式;

(3)在满足(2)的条件下,求数列的前项和.

查看答案和解析>>

同步练习册答案