【题目】已知曲线上的任意一点到两定点、距离之和为,直线交曲线于两点,为坐标原点.
(1)求曲线的方程;
(2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;
(3)若直线过点,求面积的最大值,以及取最大值时直线的方程.
科目:高中数学 来源: 题型:
【题目】如图,该几何体由半圆柱体与直三棱柱构成,半圆柱体底面直径,,,D为半圆弧的中点,若异面直线BD和所成角的大小为.
(1)证明:平面;
(2)求该几何体的表面积和体积;
(3)求点D到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】四棱锥中,底面是边长为的菱形,,是等边三角形,为的中点,.
(1)求证:;
(2)若在线段上,且,能否在棱上找到一点,使平面平面?若存在,求四面体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数学中有许多形状优美、寓意美好的曲线,曲线C:就是其中之一(如图).给出下列三个结论:
①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);
②曲线C上任意一点到原点的距离都不超过;
③曲线C所围成的“心形”区域的面积小于3.
其中,所有正确结论的序号是
A. ①B. ②C. ①②D. ①②③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:
则下列结论正确的是
A. 与2015年相比,2018年一本达线人数减少
B. 与2015年相比,2018年二本达线人数增加了倍
C. 2015年与2018年艺体达线人数相同
D. 与2015年相比,2018年不上线的人数有所增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年11月15日,我市召开全市创建全国文明城市动员大会,会议向全市人民发出动员令,吹响了集结号.为了了解哪些人更关注此活动,某机构随机抽取了年龄在15~75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:,,,,,.把年龄落在和内的人分别称为“青少年人”和“中老年人”,经统计“青少年人”与“中老年人”的人数之比为.
(1)求图中的值,若以每个小区间的中点值代替该区间的平均值,估计这100人年龄的平均值;
(2)若“青少年人”中有15人关注此活动,根据已知条件完成题中的列联表,根据此统计结果,问能否有的把握认为“中老年人”比“青少年人”更加关注此活动?
关注 | 不关注 | 合计 | |
青少年人 | 15 | ||
中老年人 | |||
合计 | 50 | 50 | 100 |
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
附参考公式:,其中.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:
年龄x | 28 | 32 | 38 | 42 | 48 | 52 | 58 | 62 |
收缩压单位 | 114 | 118 | 122 | 127 | 129 | 135 | 140 | 147 |
其中:,,
请画出上表数据的散点图;
请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;的值精确到
若规定,一个人的收缩压为标准值的倍,则为血压正常人群;收缩压为标准值的倍,则为轻度高血压人群;收缩压为标准值的倍,则为中度高血压人群;收缩压为标准值的倍及以上,则为高度高血压人群一位收缩压为180mmHg的70岁的老人,属于哪类人群?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下面几种推理过程是演绎推理的是( )
A. 某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人
B. 由三角形的性质,推测空间四面体的性质
C. 平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分
D. 在数列中,,可得,由此归纳出的通项公式
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com