精英家教网 > 高中数学 > 题目详情

【题目】数列{an}的通项an=n2(cos2 ﹣sin2 ),其前n项和为Sn , 则S30

【答案】470
【解析】解:∵an=n2(cos2 ﹣sin2 )=n2cos
+32cos2π+…+302cos20π
= +…
= [1+22﹣2×32)+(42+52﹣62×2)+…+(282+292﹣302×2)]
= [(12﹣32)+(42﹣62)+…+(282﹣302)+(22﹣32)+(52﹣62)+…+(292﹣302)]
= [﹣2(4+10+16…+58)﹣(5+11+17+…+59)]
= [﹣2× ]
=470
所以答案是:470
【考点精析】掌握数列的前n项和是解答本题的根本,需要知道数列{an}的前n项和sn与通项an的关系

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知p3+q3=2,求证:p+q≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,∠ABC的对边分别为, , ,若,

(1)求∠B的大小;

(2) ,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}满足a1+a2+…+an+2n= (an+1+1),n∈N* , 且a1=1,求证:
(1)数列{an+2n}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex+bex , (b∈R),函数g(x)=2asinx,(a∈R).
(1)求函数f(x)的单调区间;
(2)若b=﹣1,f(x)>g(x),x∈(0,π),求a取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,A、B、C、D为平面四边形ABCD的四个内角.

(1)证明:tan
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知圆C的圆心C( ),半径r=
(1)求圆C的极坐标方程;
(2)若α∈[0, ),直线l的参数方程为 (t为参数),直线l交圆C于A、B两点,求弦长|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,圆O的两弦AB和CD交于点E,作EF∥CB,并且交AD的延长线于点F,FG切圆O于点G.

(1)求证:△DEF∽△EFA;
(2)如果FG=1,求EF的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 + =1(a>b>0)的左焦点为F,右顶点为A,离心率为 .已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为
(Ⅰ)求椭圆的方程和抛物线的方程;
(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为 ,求直线AP的方程.

查看答案和解析>>

同步练习册答案