精英家教网 > 高中数学 > 题目详情

【题目】设x,y满足约束条件 ,若目标函数2z=2x+ny(n>0),z的最大值为2,则y=tan(nx+ )的图象向右平移 后的表达式为(
A.y=tan(2x+
B.y=tan(x﹣
C.y=tan(2x﹣
D.y=tan2x

【答案】C
【解析】解:作出x,y满足约束条件 下的可行域,目标函数2z=2x+ny(n>0)可化为:y= + ,基准线y= , 由线性规划知识,可得当直线z=x+ 过点B(1,1)时,z取得最大值,即1+ =2,解得n=2;
则y=tan(nx+ )的图象向右平移 个单位后得到的解析式为y=tan[2(x﹣ )+ ]=tan(2x﹣ ).

故选:C.
画出约束条件的可行域,利用z的最大值求出n,利用三角函数的图象变换化简求解即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知命题 “存在 ”,命题 :“曲线 表示焦点在 轴上的椭圆”,命题 “曲线 表示双曲线”
(1)若“ ”是真命题,求实数 的取值范围;
(2)若 的必要不充分条件,求实数 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足:a1=,a2=2,3(an+1-2an+an-1)=2.

(1)证明:数列{an+1-an}是等差数列;

(2)求使+…+成立的最小的正整数n.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知顶点在单位圆上的 中,角 的对边分别为 ,且 .
(1)求 的值;
(2)若 ,求 的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《算法统综》是明朝程大位所著数学名著,其中有这样一段表述:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一”,其意大致为:有一七层宝塔,每层悬挂的红灯数为上一层的两倍,共有381盏灯,则塔从上至下的第三层有( )盏灯.
A.14
B.12
C.10
D.8

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在各项均为正数的等比数列 中, ,且 成等差数列.
(1)求等比数列 的通项公式;
(2)若数列 满足 ,求数列 的前 项和 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过抛物线 的焦点F,斜率为 的直线交抛物线于 两点,且 .
(1)求该抛物线E的方程;
(2)过点F任意作互相垂直的两条直线 ,分别交曲线E于点C,D和M,N.设线段 的中点分别为P,Q,求证:直线PQ恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .
(1)求 的单调区间;
(2)若 对一切 恒成立,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数

)若函数上单调递减,求实数的取值范围.

)是否存在常数,当时, 在值域为区间

查看答案和解析>>

同步练习册答案