科目:高中数学 来源: 题型:解答题
(本题满分12分)若实数、、满足,则称比接近.
(1)若比3接近0,求的取值范围;
(2)对任意两个不相等的正数、,证明:比接近;
(3)已知函数的定义域.任取,等于和中接近0的那个值.写出函数的解析式,并指出它的奇偶性、最值和单调性(结论不要求证明).
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数的定义域为R,对任意,均有
,且对任意都有。
(1)试证明:函数在R上是单调函数;
(2)判断的奇偶性,并证明。
(3)解不等式。
(4)试求函数在上的值域;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
设函数的定义域为(0,+∞),且对任意正实数x,y都有f(x·y)=f(x)+f(y)恒成立,已知f(2)=1且x>1时f(x)>0.
(1)求;
(2)判断y=f(x)在(0,+ ∞)上的单调性;
(3)一个各项均为正数的数列其中sn是数列的前n项和,求
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com