【题目】已知过抛物线E:x2=2py(p>0)焦点F且倾斜角的60°直线l与抛物线E交于点M,N,△OMN的面积为4. (Ⅰ)求抛物线E的方程;
(Ⅱ)设P是直线y=﹣2上的一个动点,过P作抛物线E的切线,切点分别为A、B,直线AB与直线OP、y轴的交点分别为Q、R,点C、D是以R为圆心、RQ为半径的圆上任意两点,求∠CPD最大时点P的坐标.
【答案】解:(Ⅰ)依题意, ,所以直线l的方程为 ; 由 得: ,
法一:所以 ,
O到MN的距离 ,
∴p=2,抛物线方程为x2=4y;
法二: , ,故抛物线方程为x2=4y.
(II)设 ,由x2=4y得 ,
则切线PA方程为 即 ,
同理,切线PB方程为 ,
把P代入可得 ,故直线AB的方程为 即tx﹣2y+4=0,
∴R(0,2)由 得 ,
∴ ,
当PC,PD与圆R相切时角∠CPD最大,
此时 ,等号当 时成立,
∴当 时,所求的角∠CPD最大.
综上,当∠CPD最大时点P的坐标为 .
法二:同解法一,得AB:tx﹣2y+4=0,注意到OP⊥AB,
∴ ,
∴
当且仅当t2+8即 时等号成立.
【解析】(Ⅰ)利用点斜法写出直线l的方程为 ;结合△OMN的几何意义和三角形的面积求法求得p的值即可;(Ⅱ)设 ,由x2=4y得 ,易得切线PA、PB的直线方程,把点P的坐标代入得到直线AB的方程tx﹣2y+4=0,由R的坐标和圆半径的计算方法求得半径的长度,则当PC,PD与圆R相切时角∠CPD最大,所以利用锐角三角函数的定义和不等式的基本性质进行解答即可.
科目:高中数学 来源: 题型:
【题目】设递增的等比数列{an}的前n项和为Sn , 已知2(an+an+2)=5an+1 , 且 ,
(1)求数列{an}通项公式及前n项和为Sn;
(2)设 ,求数列{bn}的前n项和为Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若无穷数列{an}满足:k∈N* , 对于 ,都有an+k﹣an=d(其中d为常数),则称{an}具有性质“P(k,n0 , d)”. (Ⅰ)若{an}具有性质“P(3,2,0)”,且a2=3,a4=5,a6+a7+a8=18,求a3;
(Ⅱ)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c3=2,b3=c1=8,an=bn+cn , 判断{an}是否具有性质“P(2,1,0)”,并说明理由;
(Ⅲ)设{an}既具有性质“P(i,2,d1)”,又具有性质“P(j,2,d2)”,其中i,j∈N* , i<j,i,j互质,求证:{an}具有性质“ ”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆C1的中心在原点O,长轴左、右端点M、N在x轴上,椭圆C2的短轴为MN,且C1、C2的离心率都为e,直线l⊥MN,l与C1交于两点,与C2交于两点,这四点纵坐标从大到小依次为A、B、C、D.
(1)设 ,求|BC|与|AD|的比值;
(2)若存在直线l,使得BO∥AN,求椭圆离心率e的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线C1:y2=8ax(a>0),直线l倾斜角是45°且过抛物线C1的焦点,直线l被抛物线C1截得的线段长是16,双曲线C2: ﹣ =1的一个焦点在抛物线C1的准线上,则直线l与y轴的交点P到双曲线C2的一条渐近线的距离是( )
A.2
B.
C.
D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】赌博有陷阱.某种赌博游戏每局的规则是:参与者现在从标有5、6、7、8、9的相同小球中随机摸取一个,将小球上的数字作为其赌金(单位:元);随后放回该小球,再随机摸取两个小球,将两个小球上数字之差的绝对值的2倍作为其资金(单位:元).若随机变量ξ和η分别表示参与者在每一局赌博游戏中的赌金与资金,则Eξ﹣Eη=(元).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知x,y∈R,m+n=7,f(x)=|x﹣1|﹣|x+1|.
(1)解不等式f(x)≥(m+n)x;
(2)设max{a,b}= ,求F=max{|x2﹣4y+m|,|y2﹣2x+n|}的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在我国古代数学名著《九章算术》中,将四个面都为直角三角形的四面体称为鳖臑,如图,在鳖臑ABCD中,AB⊥平面BCD,且AB=BC=CD,则异面直线AC与BD所成角的余弦值为( )
A.
B.﹣
C.
D.﹣
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣mex(m∈R,e为自然对数的底数)
(1)讨论函数f(x)的单调性;
(2)若f(x)≤e2x对x∈R恒成立,求实数m的取值范围;
(3)设x1 , x2(x1≠x2)是函数f(x)的两个两点,求证x1+x2>2.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com