【题目】已知椭圆()的离心率为,以的短轴为直径的圆与直线相切.
(1)求的方程;
(2)直线交于,两点,且.已知上存在点,使得是以为顶角的等腰直角三角形,若在直线的右下方,求的值.
【答案】(1);(2)
【解析】
(1)由的短轴为直径的圆与直线相切求出,再由离心率和关系,可求出椭圆标准方程;
(2)将直线与椭圆方程联立,消元整理,由根与系数关系,得到的两个关系式,再从已知条件寻找第三个等量关系,根据已知结合平面图形,可得轴,过作的垂线,垂足为,则为线段的中点,得,进而有,代入直线方程,得到等量关系,求解关于方程组,即可求出.
(1)依题意,,
因为离心率,
所以,解得,
所以的标准方程为.
(2)因为直线的倾斜角为,
且是以为顶角的等腰直角三角形,
在直线的右下方,所以轴,
过作的垂线,垂足为,则为线段的中点,
所以,故,
所以,即,
整理得.①
由得.
所以,解得,
所以,②
,③
由①②得,,④
将④代入②得,⑤
将④⑤代入③得,解得.
综上,的值为.
科目:高中数学 来源: 题型:
【题目】如果无穷数列{an}的所有项恰好构成全体正整数的一个排列,则称数列{an}具有性质P.
(Ⅰ)若an(k∈N*),判断数列{an}是否具有性质P,并说明理由,
(Ⅱ)若数列{an}具有性质P,求证:{an}中一定存在三项ai,aj,ak(i<j<k)构成公差为奇数的等差数列;
(Ⅲ)若数列{an}具有性质P,则{an}中是否一定存在四项ai,aj,ak,al,(i<j<k<l)构成公差为奇数的等差数列?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:给定整数i,如果非空集合满足如下3个条件:
①;②;③,若,则.
则称集合A为“减i集”
(1)是否为“减0集”?是否为“减1集”?
(2)证明:不存在“减2集”;
(3)是否存在“减1集”?如果存在,求出所有“减1集”;如果不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】勒洛三角形是具有类似圆的“定宽性”的曲线,它是由德国机械工程专家、机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.如图中的两个勒洛三角形,它们所对应的等边三角形的边长比为,若从大的勒洛三角形中随机取一点,则此点取自小勒洛三角形内的概率为______.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,且椭圆上存在一点,满足.
(1)求椭圆的标准方程;
(2)过椭圆右焦点的直线与椭圆交于不同的两点,求的内切圆的半径的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】椭圆()的离心率是,点在短轴上,且。
(1)球椭圆的方程;
(2)设为坐标原点,过点的动直线与椭圆交于两点。是否存在常数,使得为定值?若存在,求的值;若不存在,请说明理由。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com