精英家教网 > 高中数学 > 题目详情
附加题:是否存在一个二次函数f(x),使得对任意的正整数k,当时,都有f(x)=成立?请给出结论,并加以证明.
存在符合条件的二次函数.
设f(x)=ax2+bx+c,则当k=1,2,3时有:
f(5)=25a+5b+c=55 ①; f(55)=3025a+55a+c=5555②; f(555)=308025a+555b+c=555555③.
联立①、②、③,解得a=
9
5
,b=2,c=0.
于是,f(x)=
9
5
x2+2x.
下面证明二次函数f(x)=
9
5
x2+2x符合条件.
因为=5(1+10+100++10k-1)=
5
9
(10k-1),
同理:=
5
9
(102k-1);
=f(
5
9
(10k-1))=
9
5
[
5
9
(10k-1)]
2
+2×
5
9
(10k-1)
=
5
9
(10k-1)2+2×
5
9
(10k-1)=
5
9
(10k-1)(10k+1)=
5
9
(102k-1)=
∴所求的二次函数 f(x)=
9
5
x2+2x符合条件.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

已知函数则      (   )
A.   B.
C.       D.的大小不能确定

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知二次函数f(x)=x2+(b-
2-a2
)x+(a+b)2的图象关于y轴对称,则此函数的图象与y轴交点的纵坐标的最大值为(  )
A.1B.
2
C.2D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若关于x的不等式x2-4x-2-a>0在区间(1,4)内有解,则实数a的取值范围是(  )
A.a<-2B.a>-2C.a>-6D.a<-6

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数f(x)=x2+mx+nlnx(x>0,实数m,n为常数).且n+3m2=0(m>0),若函数f(x)在x∈[1,+∞)上的最小值为0,则m=(  )
A.e
2
3
B.e
3
2
C.
3
2
D.-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

当x∈(3,4)时,不等式x2+mx+4<0恒成立,则m的取值范围是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2ax+3,x∈[0,2].
①当a≥2时,f(x)在[0,2]上的最小值为-13,求a的值;
②求f(x)在[0,2]上的最小值g(a);
③求②中g(a)的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2+2ax-4,a∈R.
(1)若f(x)为偶函数,求a的值;
(2)若f(x)在[1,+∞)上为增函数,求a的取值范围;
(3)f(x)在[1,2]内的最小值为g(a),求g(a)的函数表达式.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设二次函数f(x)=(k-4)x2+kx
(k∈R)
,对任意实数x,有f(x)≤6x+2恒成立;数列{an}满足an+1=f(an).
(1)求函数f(x)的解析式和值域;
(2)证明:当an∈(0,
1
2
)
时,数列{an}在该区间上是递增数列;
(3)已知a1=
1
3
,是否存在非零整数λ,使得对任意n∈N*,都有log3(
1
1
2
-a1
)+log3(
1
1
2
-a2
)+…+log3(
1
1
2
-an
)>-
1+(-1)n-12λ+nlog32恒成立,若存在,求之;若不存在,说明理由.

查看答案和解析>>

同步练习册答案