精英家教网 > 高中数学 > 题目详情
将一个各个面上均涂有颜色的正方体锯成64个同样大小的正方体,从这些小正方体中任取一个,其中恰有两面涂色的概率为
3
8
3
8
分析:本题是一个古典概型,试验发生包含的事件共有64个结果,满足条件的事件是恰有2面涂有颜色的,两面涂有颜色的是在正方体的棱的中间上出现,每条棱上共有2个,
有12条棱,共有24个,得到概率.
解答:解:由题意知本题是一个古典概型,
试验发生包含的事件是正方体锯成64个同样大小的小正方体,共有64个结果,
满足条件的事件是恰有2面涂有颜色的,两面涂有颜色的是在正方体的棱上出现,
每条棱上共有2个,有12条棱,共有24个,
根据古典概型概率公式得到P=
24
64
=
3
8

故答案为
3
8
点评:本题主要考查等可能事件的概率,古典概型,要求能够列举出所有事件和发生事件的个数,概率问题同其他的知识点结合在一起,实际上是以概率问题为载体,还考查考查
正方体的结构特征,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体,从这些小正方体中任取一个,其中恰有两面涂有颜色的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将一个各个面上均涂有颜色的正方体锯成n3(n≥3)个同样大小的小正方体.
(1)若n=10,则从1000个小正方体中任取一个,恰好两面涂有颜色的概率为
12
125
12
125

(2)从n3个小正方体中任取一个,至多有一面涂有颜色的概率为
n3-12n+16
n3
n3-12n+16
n3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•邯郸二模)将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体.
(Ⅰ)从这些小正方体中任取1个,求其中至少有两面涂有颜色的概率;
(Ⅱ)从中任取2个小正方体,记2个小正方体涂上颜色的面数之和为ξ.求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

将一个各个面上均涂有颜色的正方体锯成27个同样大小的小正方体
(Ⅰ)从这些小正方体中任取1个,求其中至少有两面涂有颜色的概率;
(Ⅱ)从中任取2个小正方体,求2个小正方体涂上颜色的面数之和为4的概率.

查看答案和解析>>

同步练习册答案