试题分析:(I)根据题意可得:△ABC为正三角形,所以AE⊥BC,又因为BC∥AD,所以AE⊥AD.又PA⊥AE,且PA∩AD=A,所以AE⊥平面PAD,进而可得答案;
(Ⅱ)先根据条件由(1)知AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角. 在Rt△EAH中,AE=
,所以 当AH最短时,∠EHA最大进而得到异面直线的所成的角。
(1)证明:由四边形ABCD为菱形,∠ABC=60°,
可得△ABC为正三角形.因为E为BC的中点,
所以AE⊥BC.又BC∥AD,因此AE⊥AD.
因为PA⊥平面ABCD,
AE
平面ABCD,所以PA⊥AE.而 PA
平面PAD,
AD
平面PAD 且PA∩AD=A,所以 AE⊥平面PAD,
又PD
平面PAD.所以 AE⊥PD.
(2)解:设AB=2,H为PD上任意一点,
连接AH,EH. 由(1)知AE⊥平面PAD,
则∠EHA为EH与平面PAD所成的角.
在Rt△EAH中,AE=
,所以 当AH最短时,∠EHA最大,
即当AH⊥PD时,∠EHA最大.此时tan∠EHA=
因此AH=
.又AD=2,所以∠ADH=45所以 PA=2.
异面直线所成角30
0点评:解决此类问题的关键是熟练掌握几何体的结构特征,以便利用已知条件得到空间的线面关系,并且便于建立坐标系利用向量的有关运算解决空间角等问题