精英家教网 > 高中数学 > 题目详情

【题目】椭圆的两个焦点坐标分别为F1(-,0)F2(,0),且椭圆过点

(1)求椭圆方程;

(2)过点作不与y轴垂直的直线l交该椭圆于MN两点,A为椭圆的左顶点,证明

【答案】(1)(2)见解析

【解析】

(1)设椭圆方程为,由题设代入点的坐标,求得,即可得到椭圆的方程;

(2)设直线的方程,联立方程组,利用根与系数的关系,得到,再由向量的数量积的运算求得,即可得到答案.

解:(1)设椭圆方程为

,椭圆过点 可得

解得 所以可得椭圆方程为.

(2)由题意可设直线MN的方程为:

联立直线MN和椭圆的方程:

化简得(k2+4)y2ky=0.

M(x1y1),N(x2y2),

y1y2y1y2

A(-2,0),则=(x1+2,y1)·(x2+2,y2)=(k2+1)y1y2 k(y1y2)+=0

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosx+sinx,2sinx), =(cosx﹣sinx,cosx).令f(x)=
(1)求f(x)的最小正周期;
(2)求f(x)在[ ]上的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2sinxcosx+2 cos2x﹣
(1)求函数f(x)的最小正周期和单调减区间;
(2)已知△ABC的三个内角A,B,C的对边分别为a,b,c,其中a=7,若锐角A满足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足an+1=an(1﹣an+1),a1=1,数列{bn}满足:bn=anan+1 , 则数列{bn}的前10项和S10=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知递增等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项,
(1)求数列{an}的通项公式;
(2)若 ,Sn=b1+b2+…+bn , 求使Sn+n2n+1>62成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax3﹣3x2+1(a>0),定义h(x)=max{f(x),g(x)}=
(1)求函数f(x)的极值;
(2)若g(x)=xf'(x),且存在x∈[1,2]使h(x)=f(x),求实数a的取值范围;
(3)若g(x)=lnx,试讨论函数h(x)(x>0)的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆.

(Ⅰ)若圆的切线在轴和轴上的截距相等,求此切线的方程;

(Ⅱ)从圆外一点向该圆引一条切线,切点为为坐标原点,且,求使取得最小值的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点M(﹣3,0),N(3,0),点P为坐标平面内一动点,且,则动点P(x,y)到两点A(﹣3,0)、B(﹣2,3)的距离之和的最小值为(  )

A. 4 B. 5 C. 6 D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设S为复数集C的非空子集.如果
(1)S含有一个不等于0的数;
(2)a,b∈S,a+b,a﹣b,ab∈S;
(3)a,b∈S,且b≠0,∈S,那么就称S是一个数域.
现有如下命题:
①如果S是一个数域,则0,1∈S;
②如果S是一个数域,那么S含有无限多个数;
③复数集是数域;
④S={a+b|a,b∈Q,}是数域;
⑤S={a+bi|a,b∈Z}是数域.
其中是真命题的有 (写出所有真命题的序号).

查看答案和解析>>

同步练习册答案