精英家教网 > 高中数学 > 题目详情

【题目】某石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探,由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用,勘探初期数据资料见如表:

井号

1

2

3

4

5

6

坐标

钻探深度(

2

4

5

6

8

10

出油量(

40

70

110

90

160

205

(参考公式和计算结果:

(1)号旧井位置线性分布,借助前组数据求得回归直线方程为;求,并估计的预报值;

(2)现准备勘探新井,若通过1,3,5,7号并计算出的 的值( 精确到)相比于(1)中的 ,且,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?

【答案】(1) 的预报值为24;(2)使用位置最接近的已有旧井

【解析】试题分析:(1)计算出 根据回归直线必过样本中心点可得的值,将代入可得预报值;(2)利用所给数据计算出,得到,即可得出结论.

试题解析:(1)因为 . 回归直线必过样本中心点,则. 故回归直线方程为,当时, ,即的预报值为24.

(2)因为 所以 ,即所以,且,因此使用位置最接近的已有旧井

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程

(2)设计算的导数.

【答案】(1).(2).

【解析】试题分析:(1)由导数的基本定义就出斜率,根据点斜式写出切线方程;(2) .

试题解析:

(1),则

,∴所求切线方程为.

(2) .

型】解答
束】
18

【题目】对某校高一年级学生参加社区服务次数进行统计,随机抽取名学生作为样本得到这名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下

1)求出表中及图中的值

2)若该校高一学生有800人,试估计该校高一学生参加社区服务的次数在区间内的人数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设定义在上的函数对于任意实数,都有成立,且,当时,

1判断的单调性,并加以证明;

2试问:当时,是否有值?如果有,求出最值;如果没有,说明理由;

3解关于的不等式,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(-1,2)为圆心的圆与直线l1x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于MN两点,QMN的中点.

(1)求圆A的方程;

(2)当|MN|=2时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)已知函数是偶函数.

1)求实数的值;

2)设, 有且只有一个实数解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某机构在某一学校随机抽取30名学生参加环保知识测试,测试成绩(单位:分)如图所示,假设得分值的中位数为me , 众数为m0 , 平均值为 ,则(

A.me=m0=
B.me=m0
C.me<m0
D.m0<me

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(x1)f(x)=-2x1f(2)15.

(1)求函数f(x)的解析式;

(2) g(x)(22m)xf(x)

若函数g(x)x[02]上是单调函数求实数m的取值范围;

求函数g(x)x[02]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(12分)已知函数f(x)对任意的实数mn都有:f(mn)=f(m)+f(n)-1,

且当x>0时,有f(x)>1.

(1)求f(0).

(2)求证:f(x)在R上为增函数.

(3)若f(1)=2,且关于x的不等式f(ax-2)+f(xx2)<3对任意的x∈[1,+∞)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】锐角△ABC中,角A,B,C所对的边分别为a,b,c,且acosB+bcosA= csinC.
(1)求cosC;
(2)若a=6,b=8,求边c的长.

查看答案和解析>>

同步练习册答案