精英家教网 > 高中数学 > 题目详情
13.已知角x≠$\frac{kπ}{2}$(k∈Z),函数F(x)=$\frac{|sinx|}{cos(\frac{3π}{2}+x)}$-$\frac{sin(\frac{3π}{2}-x)}{|cosx|}$+$\frac{|tanx|}{tanx}$,则F(x)可能取值的个数是(  )
A.1B.2C.3D.4

分析 由诱导公式化简,分类讨论去绝对值即可.

解答 解:由诱导公式化简可得F(x)=$\frac{|sinx|}{cos(\frac{3π}{2}+x)}$-$\frac{sin(\frac{3π}{2}-x)}{|cosx|}$+$\frac{|tanx|}{tanx}$=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$,
∵角x≠$\frac{kπ}{2}$(k∈Z),∴角x的终边不在坐标轴,
∴当x为第一象限角时,F(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=1+1+1=3;
当x为第二象限角时,F(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=1-1-1=1;
当x为第三象限角时,F(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=-1-1+1=1;
当x为第四象限角时,F(x)=$\frac{|sinx|}{sinx}$+$\frac{cosx}{|cosx|}$+$\frac{|tanx|}{tanx}$=-1+1-1=1.
故F(x)可能取值的个数为2.
故选:B.

点评 本题考查三角函数化简求值,涉及分类讨论的思想和诱导公式,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.抛掷甲,乙两枚质地均匀且四面上分别标有1,2,3,4的正四面体,其底面落于桌面,记所得数字分别为x,y.设ξ为随机变量,若$\frac{x}{y}$为整数,则ξ=0;若$\frac{x}{y}$为小于1的分数,则ξ=-1;若$\frac{x}{y}$为大于1的分数,则ξ=1.
(1)求概率P(ξ=0);
(2)求ξ的分布列,并求其数学期望E(ξ).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设偶函数f(x)满足f(x)=2x-4(x≥0),若f(x-2)>0,则x的取值范围是(  )
A.(-∞,0)B.(0,4)C.(4,+∞)D.(-∞,0)∪(4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义在R上的函数f(x)对任意实数x,y,恒有f(x)+f(y)=f(x+y),且当x>0时,f(x)<0,又f(1)=-$\frac{2}{3}$.
(1)求证:f(x)为奇函数;
(2)求证:f(x)在R上是减函数;
(3)求不等式f(2x)+f(x2-2)<-4的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知实数x,y满足x•y>0,且x+y=-1,则$\frac{1}{x}+\frac{4}{y}$的最大值为-9.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=$\frac{1}{\sqrt{sin2x}}$的定义域为(kπ,kπ+$\frac{π}{2}$)(k∈Z).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知斜三棱柱ABC-A1B1C1的底面是边长为4的正三角形,侧棱长为5,点D,E,F分别是BB1,AA1,CC1,的中点,若侧棱AA1与底面三角形的相邻两边都成60°角,则四棱锥D-A1C1EF的体积是(  )
A.$\frac{{20\sqrt{2}}}{3}$B.$\frac{{20\sqrt{3}}}{3}$C.$\frac{{50\sqrt{2}}}{9}$D.$\frac{{50\sqrt{3}}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|x-2|-|2x+5|.
(1)解不等式f(x)≤0;
(2)若f(x)-3|x-2|≤m,对一切实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.①(10)-2>(10)-3(用<、>或=符号填空)
②log22=log55(用<、>或=符号填空)
③sin$\frac{π}{2}$=1.

查看答案和解析>>

同步练习册答案