精英家教网 > 高中数学 > 题目详情

【题目】如图,在正方体为棱的中点.

Ⅰ)求证:平面

Ⅱ)求证:平面平面

Ⅲ)若正方体棱长为,求三棱锥的体积.

【答案】(1)见解析(2)见解析(3)

【解析】试题分析:(1)根据三角形中位线性质得EF//BD,再根据平行四边形性质得,从而有,再根据线面平行判定定理得平面(2)分析可得关键证平面,这可由正方形性质得,由正方体性质得平面,即得,最后根据线面垂直判定定理以及面面垂直判定定理证得结论(3),三棱锥高为,再利用三棱锥体积公式可得体积

试题解析:

证明:连接

∴四边形是平行四边形,

又∵分别是的中点,

又∵平面平面

平面

证明:在正方体中,

平面

又∵四边形是正方形,

平面

又∵平面

平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直三棱柱中,底面为等腰直角三角形, 是侧棱上一点,设

(1) 若,求的值;

(2) 若,求直线与平面所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某省电视台为了解该省卫视一档成语类节目的收视情况,抽查东西两部各5个城市,得到观看该节目的人数(单位:千人)如下茎叶图所示:

其中一个数字被污损.

(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率.

(2)随着节目的播出,极大激发了观众对成语知识的学习积累的热情,从中获益匪浅.现从观看该节目的观众中随机统计了4位观众的周均学习成语知识的时间(单位:小时)与年龄(单位:岁),并制作了对照表(如下表所示)

年龄(岁)

20

30

40

50

周均学习成语知识时间(小时)

2.5

3

4

4.5

由表中数据,试求线性回归方程,并预测年龄为55岁观众周均学习成语知识时间.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】电视传媒公司为了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图:

将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.

(1)根据已知条件完成上面的列联表,若按的可靠性要求,并据此资料,你是否认为“体育迷”与性别有关?

(2)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为.若每次抽取的结果是相互独立的,求分布列,期望和方差.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设关于的一元二次方程

(1)若是从0,1,2,3四个数中任取的一个数, 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;

(2)若时从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 ,0<β< ,cos( +α)=﹣ ,sin( +β)= ,求sin(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.(本小题满分12分)

如图,四棱锥P—ABCD中,底面ABCD是边长为的正方形EF分别为PCBD的中点,侧面PAD⊥底面ABCD,且PA=PD=AD.

)求证:EF//平面PAD

)求三棱锥C—PBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正三棱锥,已知

(1)求此三棱锥内切球的半径.

(2)若是侧面上一点,试在面上过点画一条与棱垂直的线段,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列满足:

(1)求数列的通项公式;

(2)若数列的前项和为 , 成立的正整数的最小值.

查看答案和解析>>

同步练习册答案