精英家教网 > 高中数学 > 题目详情

【题目】A,B,C是圆O上不同的三点,线段CO与线段AB交于点D,若 (λ∈R,μ∈R),则λ+μ的取值范围是(
A.(1,+∞)
B.(0,1)
C.(1, ]
D.(﹣1,0)

【答案】A
【解析】解:∵A,B,C是圆0上不同的三点,线段C0与线段AB交于点D;
∴如图所示,不妨取∠AOB=120°,∠AOC=∠BOC=60°,则四边形AOBC为菱形;
= +

∴λ=μ=1,λ+μ=2,∴可排除B,C,D选项.
故选:A.

【考点精析】本题主要考查了平面向量的基本定理及其意义的相关知识点,需要掌握如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设抛物线C:x2=4y的焦点为F,斜率为k的直线l经过点F,若抛物线C上存在四个点到直线l的距离为2,则k的取值范围是(
A.(﹣∞,﹣ )∪( ,+∞)
B.(﹣ ,﹣1)∪(1,
C.(﹣
D.(﹣∞,﹣1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的右焦点F(1,0),过F的直线l与椭圆C交于A,B两点,当l垂直于x轴时,|AB|=3.
(1)求椭圆C的标准方程;
(2)在x轴上是否存在点T,使得 为定值?若存在,求出点T坐标,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,且),且,设,数列满足.

1)求证:数列是等比数列并求出数列的通项公式;

2)求数列的前n项和

3)对于任意恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)解不等式

(2)若函数在区间上存在零点,求实数的取值范围;

3)若函数其中为奇函数, 为偶函数,若不等式对任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为提高市民的戒烟意识,通过一个戒烟组织面向全市烟民征招志愿戒烟者,从符合条件的志愿者中随机抽取100名,将年龄分成五组,得到频率分布直方图如图所示.

(1)求图中的值,并估计这100名志愿者的平均年龄(同一组中的数据用该组区间的中点值作代表);

(2)若年龄在的志愿者中有2名女性烟民,现从年龄在的志愿者中随机抽取2人,求至少有一名女性烟民的概率;

(3)该戒烟组织向志愿者推荐了两种戒烟方案,这100名志愿者自愿选取戒烟方案,并将戒烟效果进行统计如下:

有效

无效

合计

方案

48

60

方案

36

合计

完成上面的列联表,并判断是否有的把握认为戒烟方案是否有效与方案选取有关.

参考公式:.

参考数据:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】市某机构为了调查该市市民对我国申办2034年足球世界杯的态度,随机选取了位市民进行调查,调查结果统计如下:

不支持

支持

合计

男性市民

女性市民

合计

(1)根据已知数据把表格数据填写完整;

(2)利用(1)完成的表格数据回答下列问题:

(i)能否有的把握认为支持申办足球世界杯与性别有关;

(ii)已知在被调查的支持申办足球世界杯的男性市民中有位退休老人,其中位是教师,现从这位退体老人中随机抽取人,求至多有位老师的概率.

参考公式:,其中.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:y2=2px(p>0)过点M(m,2),其焦点为F,且|MF|=2.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设E为y轴上异于原点的任意一点,过点E作不经过原点的两条直线分别与抛物线C和圆F:(x﹣1)2+y2=1相切,切点分别为A,B,求证:直线AB过定点F(1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )

A. 1盏 B. 3盏 C. 5盏 D. 9盏

查看答案和解析>>

同步练习册答案