精英家教网 > 高中数学 > 题目详情

【题目】已知向量 ,若f(x)=mn. (I)求f(x)的单调递增区间;
(II)己知△ABC的三内角A,B,C对边分别为a,b,c,且a=3,f ,sinC=2sinB,求A,c,b的值.

【答案】解:(I)f(x)=(sinx﹣ cosx)sin( +x)+ =(sinx﹣ cosx)cosx+ =sinxcosx﹣ cos2x+
= sin2x﹣ cos2x=sin(2x﹣ ),
令2kπ﹣ ≤2x﹣ ≤2kπ+ 得﹣ +kπ≤x≤ +kπ,k∈Z,
∴f(x)的单调增区间是[﹣ +kπ, +kπ],k∈Z.
(II)∵f( + )=sin(A﹣ )=
且﹣ <A﹣
∴A﹣ = ,即A=
∵sinC=2sinB,∴c=2b,
又a=3,由余弦定理得cosA= = =
解得b= ,∴c=2
综上,A= ,b= ,c=2
【解析】(I)根据平面向量的数量积公式得出f(x)解析式,使用三角恒等变换化简,利用正弦函数的单调性列不等式解出;(II)根据A的范围和f( )计算A,利用正弦定理和余弦定理求出b,c.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDEF中,四边形ABCD是矩形,EF∥AD,FA⊥面ABCD,AB=AF=EF=1,AD=2,AC交BD于点P

(1)证明:PF∥面ECD;
(2)求二面角B﹣EC﹣A的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分)已知圆有以下性质:

过圆上一点的圆的切线方程是.

为圆外一点,过作圆的两条切线,切点分别为则直线的方程为.

若不在坐标轴上的点为圆外一点,过作圆的两条切线,切点分别为,则垂直,即,且平分线段.

(1)类比上述有关结论,猜想过椭圆上一点的切线方程(不要求证明);

(2)过椭圆外一点作两直线,与椭圆相切于两点,求过两点的直线方程;

(3)若过椭圆外一点不在坐标轴上)作两直线,与椭圆相切于两点,求证:为定值,且平分线段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《城市规划管理意见》里面提出“新建住宅要推广街区制,原则上不再建设封闭住宅小区,已建成的封闭小区和单位大院要逐步打开”,这个消息在网上一石激起千层浪,各种说法不一而足.某网站为了解居民对“开放小区”认同与否,从岁的人群中随机抽取了人进行问卷调查,并且做出了各个年龄段的频率分布直方图(部分)如图所示,同时对人对这“开放小区”认同情况进行统计得到下表:

(Ⅰ)完成所给的频率分布直方图,并求的值;

(Ⅱ)如果从两个年龄段中的“认同”人群中,按分层抽样的方法抽取6人参与座谈会,然后从这6人中随机抽取2人作进一步调查,求这2人的年龄都在内的概率 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所著《周髀算经》中用赵爽弦图给出了勾股定理的绝妙证明,如图是赵爽弦图,图中包含四个全等的勾股形及一个小正方形,分别涂成朱色和黄色,若朱色的勾股形中较大的锐角α为 ,现向该赵爽弦图中随机地投掷一枚飞镖,则飞镖落在黄色的小正方形内的概率为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左右焦点分别为 ,左顶点为,上顶点为 的面积为.

(1)求椭圆的方程;

(2)设直线 与椭圆相交于不同的两点 是线段的中点.若经过点的直线与直线垂直于点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C1 的离心率为 ,抛物线C2:x2=4y的焦点F是C1的一个顶点.

(I)求椭圆C1的方程;
(II)过点F且斜率为k的直线l交椭圆C1于另一点D,交抛物线C2于A,B两点,线段DF的中点为M,直线OM交椭圆C1于P,Q两点,记直线OM的斜率为k'.
(i)求证:kk'=﹣
(ii)△PDF的面积为S1 , △QAB的面积为是S2 , 若S1S2=λk2 , 求实数λ的最大值及取得最大值时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的函数f(x)满足
(1)求函数f(x)的解析式;
(2)求函数g(x)的单调区间;
(3)如果s、t、r满足|s﹣r|≤|t﹣r|,那么称s比t更靠近r.当a≥2且x≥1时,试比较 和ex1+a哪个更靠近lnx,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信是现代生活进行信息交流的重要工具,据统计,某公司名员工中的人使用微信,其中每天使用微信时间在一小时以内的有人,其余每天使用微信在一小时以上.若将员工年龄分成青年(年龄小于岁)和中年(年龄不小于岁)两个阶段,使用微信的人中是青年人.若规定:每天使用微信时间在一小时以上为经常使用微信,经常使用微信的员工中是青年人.

)若要调查该公司使用微信的员工经常使用微信与年龄的关系,列出列联表;


青年人

中年人

合计

经常使用微信




不经常使用微信




合计




)由列联表中所得数据,是否有的把握认为经常使用微信与年龄有关

)采用分层抽样的方法从经常使用微信的人中抽取人,从这人中任选人,求事件 选出的人均是青年人的概率.

附:







查看答案和解析>>

同步练习册答案