精英家教网 > 高中数学 > 题目详情
在正四面体PABC中,DEF分别是ABBCCA的中点,下面四个结论中不成立的是

ABC//平面PDF           (BDF⊥平面PAE

C)平面PDF⊥平面ABC    (D)平面PAE⊥平面 ABC

C

解析:∵DF分别为ABCA中点,

DFBC.

BC∥面PDF,故A正确.

又∵PABC为正四面体,∴P在底面ABC内的射影OAE上.

PO⊥面ABC.

PODF.

又∵EBC中点,∴AEBC.∴AEDF.

又∵POAE=O,∴DF⊥面PAE,故B确.

又∵POPAEPO⊥面ABC,∴面PAE⊥面ABC,故D正确.

∴四个结论中不成立的是C.

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在正四面体PABC中,DEF分别是ABBCCA的中点,下面四个结论中不成立的是

ABC//平面PDF             (BDF⊥平面PAE

C)平面PDF⊥平面ABC    (D)平面PAE⊥平面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

在正四面体PABC中,DEF分别是ABBCCA的中点,下面四个结论中不成立的是(  )

A.BC∥面PDF

B.DF⊥面PAE

C.面PDE⊥面ABC

D.面PAE⊥面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

在正四面体PABC中,DEF分别是ABBCCA的中点,下面四个结论中不成立的是(  )

A.BC∥面PDF

B.DF⊥面PAE

C.面PDE⊥面ABC

D.面PAE⊥面ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正四面体P-ABC中,D、E、F分别是AB、BC、CA的中点,下面四个结论不成立的是(  )

(A)BC∥平面PDF

(B)DF⊥平面PAE

(C)平面PDF⊥平面PAE

(D)平面PDE⊥平面ABC

查看答案和解析>>

同步练习册答案