精英家教网 > 高中数学 > 题目详情
过抛物线的焦点的直线与抛物线交于两点,且为坐标原点)的面积为,则=                .

试题分析:先根据抛物线的方程求得焦点的坐标,代入直线方程求得的关系式,进而把直线与抛物线方程联立消去,求得方程的解,进而根据直线方程可分别求得的面积可分为的面积之和,而若以为公共底,则其高即为两点的轴坐标的绝对值,进而可表示三角形的面积进而求得,则的值可得,代入中,即可求得答案.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C∶=1(a>b>0)过点(0,4),离心率为.
(1)求C的方程;
(2)求过点(3,0)且斜率为的直线被C所截线段的中点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设A,B分别为椭圆=1(a>b>0)的左、右顶点,(1,)为椭圆上一点,椭圆长半轴长等于焦距.
(1)求椭圆的方程;
(2)设P(4,x)(x≠0),若直线AP,BP分别与椭圆相交于异于A,B的点M,N,求证:∠MBN为钝角.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:( )的离心率为,点(1,)在椭圆C上.
(1)求椭圆C的方程;
(2)若椭圆C的两条切线交于点M(4,),其中,切点分别是A、B,试利用结论:在椭圆上的点()处的椭圆切线方程是,证明直线AB恒过椭圆的右焦点
(3)试探究的值是否恒为常数,若是,求出此常数;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,椭圆上的点M与椭圆右焦点的连线与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.

(1)求椭圆的离心率;
(2)过且与AB垂直的直线交椭圆于P、Q,若的面积是 ,求此时椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆+y2=1的两个焦点为F1,F2,过F1作垂直于x轴的直线与椭圆相交,一个交点为P,则|PF2|=(  )
A.B.C.D.4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆过点,且离心率为.斜率为的直线与椭圆交于两点,以为底边作等腰三角形,顶点为.
(1)求椭圆的方程;
(2)求的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若抛物线y2=2px的焦点与椭圆的右焦点重合,则该抛物线的准线方程为___________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆经过点,离心率,直线与椭圆交于两点,向量,且
(1)求椭圆的方程;
(2)当直线过椭圆的焦点为半焦距)时,求直线的斜率.

查看答案和解析>>

同步练习册答案