精英家教网 > 高中数学 > 题目详情

【题目】执行如图所示的程序框图,如果输出T=6,那么判断框内应填入的条件是(
A.k<32
B.k<33
C.k<64
D.k<65

【答案】C
【解析】解:模拟执行程序框图,可得程序框图的功能是计算并输出S=log24×log46×…×logk(k+2)的值, ∵输出的值为6,又S=log24×log46×…×logk(k+2)= × ×…× = =log2(k+2)=6,
∴跳出循环的k值为64,
∴判断框的条件为k<64?.
故选:C.
【考点精析】关于本题考查的程序框图,需要了解程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在正四棱柱中,,建立如图所示的空间直角坐标系.

(1)若,求异面直线所成角的大小;

(2)若,求直线与平面所成角的正弦值;

(3)若二面角的大小为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四边形ABCD中,对角线AC,BD垂直相交于点O,且OA=OB=OD=4,OC=3. 将△BCD沿BD折到△BED的位置,使得二面角E﹣BD﹣A的大小为90°(如图).已知Q为EO的中点,点P在线段AB上,且
(Ⅰ)证明:直线PQ∥平面ADE;
(Ⅱ)求直线BD与平面ADE所成角θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,圆C的参数方程为 (θ为参数),以O为极点,x轴的非负半轴为极轴且取相同的单位长度建立极坐标系.
(1)求圆C的极坐标方程;
(2)若直线l的极坐标方程是 ,射线 与圆C的交点为O、P,与直线l的交点为Q.求线段PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(
A.?x,y∈R,若x+y≠0,则x≠1且y≠﹣1
B.a∈R,“ ”是“a>1”的必要不充分条件
C.命题“?x∈R,使得x2+2x+3<0”的否定是“?x∈R,都有x2+2x+3>0”
D.设随机变量X~N(1,52),若P(X<0)=P(X>a﹣2),则实数a的值为2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ),若函数F(x)=f(x)﹣3的所有零点依次记为x1 , x2 , x3 , …,xn , 且x1<x2<x3<…<xn , 则x1+2x2+2x3+…+2xn1+xn=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个口袋中装有大小、材质都相同的个红球,个黑球和个白球,从口袋中一次摸出一个球,连续摸球两次

)如果摸出后不放回,求第一次摸出黑球,第二次摸出白球的概率;

)如果摸出后放回,求恰有一次摸到黑球的概率

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某校期中考试数学试卷中,抽取样本,考察成绩分布,将样本分成5组,绘成频率分布直方图,图中各小组的长方形面积之比从左至右依次为1:3:6:4:2,第一组的频数是4.

1)求样本容量及各组对应的频率;

2)根据频率分布直方图估计成绩的平均分和中位数(结果保留两位小数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的首项为1,且,数列满足,对任意,都有.

(1)求数列的通项公式;

(2)令,数列的前项和为.若对任意的,不等式恒成立,试求实数的取值范围.

查看答案和解析>>

同步练习册答案