【题目】(1)过点作直线使它被直线和截得的线段被点平分,求直线的方程;
(2)光线沿直线射入,遇直线后反射,求反射光线所在的直线方程.
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x+ |+|x﹣2m|(m>0). (Ⅰ)求证:f(x)≥8恒成立;
(Ⅱ)求使得不等式f(1)>10成立的实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ea(x﹣1)﹣ax2 , a为不等于零的常数.
(Ⅰ)当a<0时,求函数f′(x)的零点个数;
(Ⅱ)若对任意x1 , x2 , 当x1<x2时,f(x2)﹣f(x1)>a( ﹣2x1)(x2﹣x1)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的两焦点为,,离心率.
(1)求此椭圆的方程;
(2)设直线:,若与此椭圆相交于,两点,且等于椭圆的短轴长,求的值;
(3)以此椭圆的上顶点为直角顶点作椭圆的内接等腰直角三角形,这样的直角三角形是否存在?若存在,请说明有几个;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等比数列{an}的前n项和为Sn , 且满足2Sn=2n+1+λ(λ∈R). (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足bn= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为 x (单位:元, x 0 )时,销售量 q(x) (单位:百台)与 x 的关系满足:若 x 不超过 20 , 则 ;若 x 大于或等于180 ,则销售量为零;当 20 ≤ x ≤180 时,( a , b 为实常数).
(Ⅰ)求函数 q(x) 的表达式;
(Ⅱ)当 x 为多少时,总利润(单位:元)取得最大值,并求出该最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】整改校园内一块长为15 m,宽为11 m的长方形草地(如图A),将长减少1 m,宽增加1 m(如图B).问草地面积是增加了还是减少了?假设长减少x m,宽增加x m(x>0),试研究以下问题:
x取什么值时,草地面积减少?
x取什么值时,草地面积增加?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|xex+1|,关于x的方程f2(x)+2sinαf(x)+cosα=0有四个不等实根,sinα﹣cosα≥λ恒成立,则实数λ的最大值为( )
A.﹣
B.﹣
C.﹣
D.﹣1
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com