精英家教网 > 高中数学 > 题目详情

【题目】如图,有一直角墙角,两边的长度足够长,若P处有一棵树与两墙的距离分别是4m和am(0<a<12),不考虑树的粗细.现用16m长的篱笆,借助墙角围成一个矩形花圃ABCD.设此矩形花圃的最大面积为u,若将这棵树围在矩形花圃内,则函数u=f(a)(单位m2)的图象大致是(
A.
B.
C.
D.

【答案】B
【解析】解:设AD长为x,则CD长为16﹣x 又因为要将P点围在矩形ABCD内,
∴a≤x≤12
则矩形ABCD的面积为x(16﹣x),
当0<a≤8时,当且仅当x=8时,S=64
当8<a<12时,S=a(16﹣a)
S=
分段画出函数图形可得其形状与C接近
故选:B.
求矩形ABCD面积的表达式,又要注意P点在长方形ABCD内,所以要注意分析自变量的取值范围,并以自变量的限制条件为分类标准进行分类讨论.判断函数的图象即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应程序,输出的结果
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,输出S的值为(

A.45
B.55
C.66
D.110

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , a1=1,满足
(1)求证:数列 为等比数列;
(2)求数列{Sn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正四棱锥P﹣ABCD中,PA=AB=a,E是棱PC的中点.
(1)求证:PC⊥BD;
(2)求直线BE与PA所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= sin2x+cos2 ﹣x)﹣ (x∈R).
(1)求函数f(x)在区间[0, ]上的最大值;
(2)在△ABC中,若A<B,且f(A)=f(B)= ,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A(看做一点)的东偏南θ角方向 ,300km的海面P处,并以20km/h的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60km,并以10km/h的速度不断增大.
(1)问10小时后,该台风是否开始侵袭城市A,并说明理由;
(2)城市A受到该台风侵袭的持续时间为多久?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{an}的首项a1=a.
(1)如果an=f(n)(n∈N*),写出数列{an}的通项公式;
(2)如果an=f(an1)(n∈N*且n≥2),要使得数列{an}是等差数列,求首项a的取值范围;
(3)如果an=f(an1)(n∈N*且n≥2),求出数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=sinxcos2x,则下列结论中错误的为(
A.点(π,0)是函数y=f(x)图象的一个对称中心
B.直线x= 是函数y=f(x)图象的一条对称轴
C.π是函数y=f(x)的周期
D.函数y=f(x)的最大值为1

查看答案和解析>>

同步练习册答案