【题目】若函数(是自然对数的底数)有两个不同的零点,则实数的取值范围为________.
【答案】
【解析】
先将函数f(x)=λex﹣x+1有两个不同的零点,转化为λ有两不等实根,令g(x),则直线y=λ曲线g(x)有两不同交点,用导数方法判断函数g(x)单调性,作出函数g(x)的大致图象,结合图象即可得出结果.
解:为函数f(x)=λex﹣x+1有两个不同的零点,
所以λ有两不等实根,令g(x),
则直线y=λ与曲线g(x)有两不同交点,
又,
令g′(x)=0得x=2,
所以,当x>2时,g′(x)<0,g(x)单调递减;
当x<2时,g′(x)>0,g(x)单调递增;
所以g(x)max,
又g(1)=0,当x>1时,,
所以,作出g(x)的大致图象如下:
由图象可得:0<λ,
故答案为:(0,).
科目:高中数学 来源: 题型:
【题目】明初出现了一大批杰出的骑兵将领,比如徐达、常遇春、李文忠、蓝玉和朱棣.明初骑兵军团击败了不可一世的蒙古骑兵,是当时世界上最强骑兵军团.假设在明军与元军的某次战役中,明军有8位将领,善用骑兵的将领有5人;元军有8位将领,善用骑兵的有4人.
(1)现从明军将领中随机选取4名将领,求至多有3名是善用骑兵的将领的概率;
(2)在明军和元军的将领中各随机选取2人,为善用骑兵的将领的人数,写出的分布列,并求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形,一个数学意义上分形的生成是基于一个不断迭代的方程式,即一种基于递归的反馈系统.分形几何学不仅让人们感悟到科学与艺木的融合,数学与艺术审美的统一,而且还有其深刻的科学方法论意义.如图,由波兰数学家谢尔宾斯基1915年提出的谢尔宾斯基三角形就属于-种分形,具体作法是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形.
若在图④中随机选取-点,则此点取自阴影部分的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,若函数满足:①在区间上单调递减,②存在常数,使其值域为,则称函数是函数的“渐近函数”.
(1)判断函数是不是函数的“渐近函数”,说明理由;
(2)求证:函数不是函数的“渐近函数”;
(3)若函数,,求证:当且仅当时,是的“渐近函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P一ABCD中,已知,点Q为AC中点,底面ABCD,,点M为PC的中点.
(1)求直线PB与平面ADM所成角的正弦值;
(2)求二面角D-AM-C的正弦值;
(3)记棱PD的中点为N,若点Q在线段OP上,且平面ADM,求线段OQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,已知平面,且四边形为直角梯形,,,.
(Ⅰ)求平面与平面所成二面角(锐角)的余弦值;
(Ⅱ)点是线段上的动点,当直线与所成角最小时,求线段的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一块三角形边角地,如图,,,.(单位为百米).欲利用这块地修一个三角形形状的草坪(图中)供市民休闲,其中点在边上,点在边上,沿的三边修建休闲长廊,规划部门要求的面积占面积的一半,设(百米),的周长为(百米)
(1)求出函数的解析式及定义域
(2)求出休闲长廊总长度的取值范围,并确定当取到最大值时点,的位置
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2014年7月18日15时,超强台风“威马逊”登陆海南省.据统计,本次台风造成全省直接经济损失119.52亿元.适逢暑假,小明调查住在自己小区的50户居民由于台风造成的经济损失,作出如下频率分布直方图:
经济损失 4000元以下 | 经济损失 4000元以上 | 合计 | |
捐款超过500元 | 30 | ||
捐款低于500元 | 6 | ||
合计 |
(1)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如上表,在表格空白处填写正确数字,并说明是否有以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否到4000元有关?
(2)台风造成了小区多户居民门窗损坏,若小区所有居民的门窗均由李师傅和张师傅两人进行维修,李师傅每天早上在7:00到8:00之间的任意时刻来到小区,张师傅每天早上在7:30到8:30分之间的任意时刻来到小区,求连续3天内,李师傅比张师傅早到小区的天数的数学期望.
附:临界值表
参考公式: .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com