精英家教网 > 高中数学 > 题目详情
3.双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的实轴长等于8,虚轴长等于6,离心率是$\frac{5}{4}$,焦点坐标是(±5,0).

分析 双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1中a=4,b=3,c=5,即可得出结论.

解答 解:双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1中a=4,b=3,c=5,
∴2a=8,2b=6,e=$\frac{c}{a}$=$\frac{5}{4}$,焦点坐标是(±5,0)
故答案为8;6;$\frac{5}{4}$;(±5,0).

点评 本题考查双曲线的方程与性质,考查学生的计算能力,确定几何量是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设a,b是两条不同的直线,α是一个平面,则下列命题正确的是(  )
A.若a∥α,b?α,则a∥bB.若a∥b,a⊥α,则b⊥αC.若a∥b,a∥α,则b∥αD.若a⊥b,a⊥α,则b∥α

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.(1)填写如表:
α$\frac{π}{6}$$\frac{π}{4}$$\frac{π}{3}$
sinα$\frac{1}{2}$$\frac{\sqrt{2}}{2}$$\frac{\sqrt{3}}{2}$
cosα$\frac{\sqrt{3}}{2}$$\frac{\sqrt{2}}{2}$$\frac{1}{2}$
(2)化简:$\frac{cos(180°+α)•sin(α+360°)}{sin(-α-180°)•cos(-180°-α)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.“log2x<3”是“${({\frac{1}{2}})^{x-8}}>1$”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既非充分也非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.满足不等式$|{\frac{x+1}{x}}|>\frac{x+1}{x}$的实数x的取值范围是-1<x<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.方程sin2x+cosx+k=0有解,则实数k的取值范围为(  )
A.$-1≤k≤\frac{5}{4}$B.$-\frac{5}{4}≤k≤1$C.$0≤k≤\frac{5}{4}$D.$-\frac{5}{4}≤k≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设全集U=R,集合A={x∈Z|y=$\sqrt{4-{x}^{2}}$},B={y|y=2x,x>1},则A∩(∁UB)={-2,-1,0,1,2},.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设△ABC的内角A、B、C所对边的长分别为a、b、c,若a+c=2b,3sinB=5sinA,则角C=(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.己知命题p:方程$\frac{{x}^{2}}{12-m}$+$\frac{{y}^{2}}{m-4}$=1表示焦点在x轴上的椭圆;命题q:点(m,3)在圆(x-10)2+(y-1)2=13内.若p∨q为真命题,p∧q为假命题,试求实数m的取值范围.

查看答案和解析>>

同步练习册答案