精英家教网 > 高中数学 > 题目详情

【题目】设不等式组所表示的平面区域为,记内的整点个数为,(整点即横、纵坐标均为整数的点)

(1)计算的值;

(2)求数列的通项公式

(3)记数列的前项和为,且,若对于一切的正整数,总有,求实数的取值范围.

【答案】(1);(2);(3) .

【解析】试题分析:(1)由x>0,y>0,3n﹣nx>0知0<x<3,易知x=1,或x=2,即可求出a1,a2,a3

(2)由x>0,y>0,3n﹣nx>0知0<x<3,易知x=1,或x=2,Dn内的整点在直线x=1和x=2上,从而可证数列{an}的通项公式是an=3n(n∈N*).

(2)易求Sn,Tn,Tn+1﹣Tn,经分析知T2,T3是数列{Tn}中的最大项,从而可求实数m的取值范围.

试题解析:

(1)

(2)

(3)

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】定义在上的函数的导函数为且满足恒成立若非负实数满足的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某海域有两个岛屿,岛在岛正东4海里处,经多年观察研究发现,某种鱼群洄游的路线是曲线,曾有渔船在距岛、岛距离和为8海里处发出过鱼群。以所在直线为轴,的垂直平分线为轴建立平面直角坐标系

1求曲线的标准方程;

2某日,研究人员在两岛同时用声纳探测仪发出不同频率的探测信号传播速度相同两岛收到鱼群在处反射信号的时间比为,问你能否确定处的位置即点的坐标

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系曲线与直线)交于两点

(1)当分别求在点处的切线方程

(2)轴上是否存在点使得当变动时总有说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆)的离心率为右焦点为斜率为1的直线与椭圆交于两点为底边作等腰三角形顶点为

(1)求椭圆的方程

(2)求的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,的中点,是等腰三角形,的中点,上一点

I平面,求

II平面将三棱柱分成两个部分,求较小部分与较大部分的体积之比

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过点,圆的圆心在圆的内部,且直线被圆所截得的弦长为.为圆上异于的任意一点,直线轴交于点,直线轴交于点.

1)求圆的方程;

2)求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,求函数在区间上的最大值与最小值;

2)若在上存在,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】高二某班50名学生在一次百米测试中,成绩全部都介于13秒到18秒之间,将测试结果按如下方式分成五组,第一组,第二组,第五组,如图是按上述分组方法得到的频率分布直方图.

(1)请根据频率分布直方图估计该组数据的众数和中位数(精确到0.1);

(2)从成绩介于两组的人中任取2人,求两人分布来自不同组的概率.

查看答案和解析>>

同步练习册答案