精英家教网 > 高中数学 > 题目详情
(2009•虹口区二模)袋中有形状、质地都相同的黑球、白球和红球共10只,已知从袋中任意摸出一个球,得到黑球的概率为
2
5
,从袋中任意摸出两个球,至少得到一个白球的概率为
7
9

求(1)从袋中任意摸出两个球,至少得到一个黑球的概率;
(2)袋中白球的个数;
理(3)从袋中任意摸出三个球,记得到白球的个数为ξ,写出随机变量ξ的分布列,并求其数学期望Eξ
分析:(1)先求袋中的黑球的个数,从而得到其它求的个数,再利用对立事件求概率;
(2)根据从中任意摸出2个球,至少得到1个白球的概率是
7
9
,写出从袋中任意摸出两个球,至少得到一个白球的对立事件的概率,列出关于白球个数的方程,解方程即可.
(3)从袋中任意摸出3个球,白球的个数为ξ,根据题意得到变量可能的取值,结合对应的事件,写出分布列和期望.
解答:解:(1)由题意可得:袋中的黑球有10×
2
5
=4
,所以其他球有6个,所以从袋中任意摸出两个球,至少得到一个黑球的概率为1-
C
2
6
C
2
10
=
2
3

(2)设袋中白球数为n.
设从中任摸2个球至少得到1个白球为事件A,任取两球无白球为事件
.
A
,∴P(
.
A
)=1-
C
2
10-n
C
2
10
=
7
9
,解得n=5,即袋中有5个白球;
(3)随机变量ξ的取值为0,1,2,3,分布列是P(ξ=0)=
1
12
P(ξ=1)=
5
12
,P(ξ=2)=
5
12
,P(ξ=3)=
1
12

∴ξ的数学期望 Eξ=
1
12
×0+
5
12
×1+
5
12
×2+
1
12
×3=
3
2
点评:本题的考点是离散型随机变量的期望与方差,主要考查排列组合、概率等基础知识,同时考查逻辑思维能力和数学应用能力,考查对立事件的概率,考查古典概型问题,是一个综合题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2009•虹口区二模)棱长均为a的正四棱锥的体积为
2
6
a3
2
6
a3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•虹口区二模)若
1+ai
1-2i
是纯虚数,则实数a=
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•虹口区二模)函数f (x)=
1
2
x2-x+
3
2
的定义域和值域都是[1,a],(a>1),则a的取值是
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•虹口区二模)直线x-y+a=0被圆x2+y2=25所截得的弦长为8,则a=
±3
2
±3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•虹口区二模)函数y=sinxcos3x-cosxsin3x (0°<x<45°)的值域是
(0,
1
4
]
(0,
1
4
]

查看答案和解析>>

同步练习册答案