精英家教网 > 高中数学 > 题目详情

【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:

1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求的值(的值四舍五入取整数),并计算

2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.

参考数据:

【答案】1;(2)分布列详见解析,数学期望为36;总金额为7200元.

【解析】

1)计算,故服从正态分布,计算得到答案.

2的取值为18365472,计算概率得到分布列,再计算数学期望得到答案.

1

.即

,则,而,故

服从正态分布

2的取值为18365472

由题意知,

所以的分布列为

18

36

54

72

估算所需要抽奖红包的总金额为:(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,侧棱垂直于底面的中点,平行于平行于面.

(1)求的长;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,已知四边形是菱形,,二面角的大小为的中点.

1)求证:平面

2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为为椭圆上两点,圆.

(1)若轴,且满足直线与圆相切,求圆的方程;

(2)若圆的半径为2,点满足,求直线被圆截得弦长的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点的延长线上,且,点的轨迹为

(1)求直线及曲线的极坐标方程;

(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:

1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求的值(的值四舍五入取整数),并计算

2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定的数列,设,即,…,中的最大值,则称数列是数列的“和谐数列”.

1)设,求的值,并证明数列是等差数列;

2)设数列都是公比为q的正项等比数列,若数列是等差数列,求公比q的取值范围;

3)设数列满足,数列是数列的“和谐数列”,且m为常数,2,…,k),求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.其中

1)若.求证:.

2)若不等式恒成立,试求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图.正四面体ABCD的顶点ABC分别在两两垂直的三条射线OXOYOZ上,则在下列命题中,错误的为(   )

A.OABC是正三棱锥B.二面角DOBA的平面角为

C.直线AD与直线OB所成角为D.直线OD⊥平面ABC

查看答案和解析>>

同步练习册答案