【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:
(1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设,分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求,的值(,的值四舍五入取整数),并计算;
(2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.
参考数据:;;.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知椭圆的左顶点为,右焦点为,,为椭圆上两点,圆.
(1)若轴,且满足直线与圆相切,求圆的方程;
(2)若圆的半径为2,点,满足,求直线被圆截得弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点是曲线上的动点,点在的延长线上,且,点的轨迹为.
(1)求直线及曲线的极坐标方程;
(2)若射线与直线交于点,与曲线交于点(与原点不重合),求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2020年新冠肺炎疫情暴发以来,中国政府迅速采取最全面、最严格、最彻底的防控举措,坚决遏制疫情蔓延势头,努力把疫情影响降到最低,为全世界抗击新冠肺炎疫情做岀了贡献.为普及防治新冠肺炎的相关知识,某高中学校开展了线上新冠肺炎防控知识竞答活动,现从大批参与者中随机抽取200名幸运者,他们的得分(满分100分)数据统计结果如图:
(1)若此次知识竞答得分整体服从正态分布,用样本来估计总体,设,分别为这200名幸运者得分的平均值和标准差(同一组数据用该区间中点值代替),求,的值(,的值四舍五入取整数),并计算;
(2)在(1)的条件下,为感谢大家积极参与这次活动,对参与此次知识竞答的幸运者制定如下奖励方案:得分低于的获得1次抽奖机会,得分不低于的获得2次抽奖机会.假定每次抽奖中,抽到18元红包的概率为,抽到36元红包的概率为.已知高三某同学是这次活动中的幸运者,记为该同学在抽奖中获得红包的总金额,求的分布列和数学期望,并估算举办此次活动所需要抽奖红包的总金额.
参考数据:;;.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于给定的数列,,设,即是,,…,中的最大值,则称数列是数列,的“和谐数列”.
(1)设,,求,,的值,并证明数列是等差数列;
(2)设数列,都是公比为q的正项等比数列,若数列是等差数列,求公比q的取值范围;
(3)设数列满足,数列是数列,的“和谐数列”,且(m为常数,,2,…,k),求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图.正四面体ABCD的顶点A,B,C分别在两两垂直的三条射线OX,OY,OZ上,则在下列命题中,错误的为( )
A.O﹣ABC是正三棱锥B.二面角D﹣OB﹣A的平面角为
C.直线AD与直线OB所成角为D.直线OD⊥平面ABC
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com