精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线的左右焦点分别为实轴长为6,渐近线方程为动点在双曲线左支上为圆上一点的最小值为

A. 8 B. 9 C. 10 D. 11

【答案】B

【解析】

求得双曲线的ab,可得双曲线方程,求得焦点坐标,运用双曲线的定义和三点共线取得最小值,连接EF1,交双曲线于M,交圆于N,计算可得所求最小值.

由题意可得2a=6,即a=3,

渐近线方程为y=±x,即有

b=1,可得双曲线方程为y2=1,

焦点为F1,0),F2,(,0),

由双曲线的定义可得|MF2|=2a+|MF1|=6+|MF1|,

由圆Ex2+(y2=1可得E(0,),半径r=1,

|MN|+|MF2|=6+|MN|+|MF1|,

连接EF1,交双曲线于M,交圆于N

可得|MN|+|MF1|取得最小值,且为|EF1|4,

则则|MN|+|MF2|的最小值为6+4﹣1=9.

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】太极图被称为“中华第一图”,闪烁着中华文明进程的光辉,它是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美.定义:能够将圆O的周长和面积同时等分成两个部分的函数称为圆O的一个“太极函数”,设圆O,则下列说法中正确的是( )

A.函数是圆O的一个太极函数

B.O的所有非常数函数的太极函数都不能为偶函数

C.函数是圆O的一个太极函数

D.函数的图象关于原点对称是为圆O的太极函数的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,椭圆的离心率为,左、右顶点分别为,线段的长为4.点在椭圆上且位于第一象限,过点分别作,直线交于点.

(1)若点的横坐标为-1,求点的坐标;

(2)直线与椭圆的另一交点为,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设点,定义,其中为坐标原点,对于下列结论:

符合的点的轨迹围成的图形面积为8

设点是直线:上任意一点,则

设点是直线:上任意一点,则使得“最小的点有无数个”的充要条件是

设点是椭圆上任意一点,则

其中正确的结论序号为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设点,定义,其中为坐标原点,对于下列结论:

符合的点的轨迹围成的图形面积为8

设点是直线:上任意一点,则

设点是直线:上任意一点,则使得“最小的点有无数个”的必要条件是

设点是圆上任意一点,则

其中正确的结论序号为  

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中国诗词大会》(第三季)亮点颇多,在“人生自有诗意”的主题下,十场比赛每场都有一首特别设计的开场诗词在声光舞美的配合下,百人团齐声朗诵,别有韵味.若《沁园春·长沙》、《蜀道难》、《敕勒歌》、《游子吟》、《关山月》、《清平乐·六盘山》排在后六场,且《蜀道难》排在《游子吟》的前面,《沁园春·长沙》与《清平乐·六盘山》不相邻且均不排在最后,则后六场的排法有__________种.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两人同时参加一个外贸公司的招聘,招聘分笔试与面试两部分,先笔试后面试.甲笔试与面试通过的概率分别为0.8,0.5,乙笔试与面试通过的概率分别为0.8,0.4,且笔试通过了才能进入面试,面试通过则直接招聘录用,两人笔试与面试相互独立互不影响.

(1)求这两人至少有一人通过笔试的概率;

(2)求这两人笔试都通过却都未被录用的概率;

(3)记这两人中最终被录用的人数为X,X的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,平面ABCD,为等边三角形,,M为AC的中点.

证明:平面PCD;

若PD与平面PAC所成角的正切值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知图形ABCDEF,内部连有线段.

1)由点A沿着图中的线段到达点E的最近路线有多少条?

2)由点A沿着图中的线段到达点C的最近路线有多少条?

3)求出图中总计有多少个矩形?

查看答案和解析>>

同步练习册答案