精英家教网 > 高中数学 > 题目详情

如图所示,在正方体ABCD-A1B1C1D1中,E是棱DD1的中点,F是侧面CDD1C1上的动点,且
B1F∥面A1BE,则B1F与平面CDD1C1 所成角的正切值构成的集合是


  1. A.
    2
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
C
分析:设G,H,I分别为CD、CC1、C1D1边上的中点,根据面面平行的判定定理,可得平面A1BGE∥平面B1HI,结合已知中B1F∥面A1BE,可得F落在线段HI上,∠B1FC1即为B1F与平面CDD1C1 所成角,求出该角正切的最大值与最小值,即可得到答案.
解答:设G,H,I分别为CD、CC1、C1D1边上的中点
则ABEG四点共面,
且平面A1BGE∥平面B1HI
又∵B1F∥面A1BE,
∴F落在线段HI上,
设HI的中点为J
则当F与J重合时,B1F与平面CDD1C1 所成角的正切值有最大值2
当F与H或I重合时,B1F与平面CDD1C1 所成角的正切值有最小值2
故B1F与平面CDD1C1 所成角的正切值构成的集合是
故选C.
点评:本题考查的知识点是直线与平面所成的角,其中分析出F落在线段HI上,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在正方体ABCD-A1B1C1D1中,E为AB的中点
(1)若F为AA1的中点,求证:EF∥面DD1C1C;
(2)若F为AA1的中点,求二面角A-EC-D1的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

12、如图所示,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宝山区二模)如图所示,在正方体ABCD-A1B1C1D1的侧面ABB1A1内有一动点P到直线A1B1和直线BC的距离相等,则动点P所在曲线形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在正方体ABCD-A1B1C1D1的侧面AB1内有一动点P到直线A1B1与直线BC的距离相等,则动点P所在曲线的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在正方体ABCD-A1B1C1D1中,点E是棱CC1上的一个动点,平面BED1交棱AA1于点F.则下列命题中假命题是(  )

查看答案和解析>>

同步练习册答案