精英家教网 > 高中数学 > 题目详情

【题目】某学校成立了数学、英语、音乐3个课外兴趣小组,3个小组分别有393233个成员,一些成员参加了不止一个小组,具体情况如图所示.

现随机选取一个成员,他属于至少2个小组的概率是________,他属于不超过2个小组的概率是________

【答案】

【解析】

根据图形求出参加兴趣小组的总人数,求出至少2个小组(只参数2个小组或参加3个小组)的人数,再求出不超过2个小组(即不是3个小组)的人数,然后可得概率.

由图形可得参加兴趣小组的总人数是60,参加3个小组的有8人,只参加2个小组的有28人,

至少2个小组包含“2个小组“3个小组两种情况,故他属于至少2个小组的概率为

P

不超过2个小组包含“1个小组“2个小组,其对立事件是“3个小组

故他属于不超过2个小组的概率是P1

故答案为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】甲、乙两班举行数学知识竞赛,参赛学生的竞赛得分统计结果如下表:

班级

参赛人数

平均数

中位数

众数

方差

45

83

86

85

82

45

83

84

85

133

某同学分析上表后得到如下结论:

①甲、乙两班学生的平均成绩相同;

②乙班优秀的人数少于甲班优秀的人数(竞赛得分分为优秀);

③甲、乙两班成绩为85分的学生人数比成绩为其他值的学生人数多;

④乙班成绩波动比甲班小.

其中正确结论有(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BCAC⊥BD.

)证明:BD⊥PC

)若AD=4BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在“创文创卫”活动中,某机构为了解一小区成年居民“吸烟与性别”是否有关.从该小区中随机抽取200位成年居民,得到下边列联表:已知在全部200人中随机抽取1人,抽到不吸烟的概率为0.75.

吸烟

不吸烟

合计

40

90

合计

200

(1)补充上面的列联表,并判断:能否有99.9%的把握认为“吸烟与性别”有关;

(2)用分层抽样的方法从吸烟居民中选5人出来,然后再从中抽2人出来,给小区居民谈谈吸烟的危害性,求恰好抽到“一男一女”的概率.

参考公式: .

参考数据:

0.10

0.05

0.010

0.005

0.001

2.706

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的前n项和为Sn,若对任意正整数n,总存在正整数m,使得Snam,则称数列{an}S数列

1S数列的任意一项是否可以写成其某两项的差?请说明理由.

2)①是否存在等差数列为S数列,若存在,请举例说明;若不存在,请说明理由.

②是否存在正项递增等比数列为S数列,若存在,请举例说明;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求曲线处的切线方程;

(2)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产万件,需另投入流动成本万元,当年产量小于万件时,(万元);当年产量不小于7万件时,(万元).已知每件产品售价为6元,假若该同学生产的商品当年能全部售完.

1)写出年利润(万年)关于年产量(万件)的函数解析式;(注:年利润=年销售收入-固定成本-流动成本)

2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?

(取.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

甲、乙两个篮球运动员互不影响地在同一位置投球,命中率分别为,且乙投球2次均未命中的概率为.

)求乙投球的命中率

)若甲投球1次,乙投球2次,两人共命中的次数记为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修44,坐标系与参数方程

已知曲线,直线为参数).

I)写出曲线的参数方程,直线的普通方程;

II)过曲线上任意一点作与夹角为的直线,交于点的最大值与最小值.

查看答案和解析>>

同步练习册答案