【题目】一网站营销部为统计某市网友2017年12月12日在某网店的网购情况,随机抽查了该市60名网友在该网店的网购金额情况,如表:
网购金额 (单位:千元) | 频数 | 频率 |
3 | ||
9 | ||
15 | ||
18 | ||
合计 | 60 |
若将当日网购金额不小于2千元的网友称为“网购达人”,网购金额小于2千元的网友称为“网购探者”,已知“网购达人”与“网购探者”人数的比例为.
(1)确定,,,的值,并补全频率分布直方图;
(2)试根据频率分布直方图估算这60名网友当日在该网店网购金额的平均数和中位数;若平均数和中位数至少有一个不低于2千元,则该网店当日评为“皇冠店”,试判断该网店当日能否被评为“皇冠店”.
科目:高中数学 来源: 题型:
【题目】阅读如图所示的程序框图,解答下列问题:
(1)求输入的的值分别为时,输出的的值;
(2)根据程序框图,写出函数()的解析式;并求当关于的方程有三个互不相等的实数解时,实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】张师傅欲将一球形的石材工件削砍加工成一圆柱形的新工件,已知原球形工件的半径为,则张师傅的材料利用率的最大值等于(注:材料利用率=)( )
A. B. C. D.
【答案】C
【解析】设球半径为R,圆柱的体积为时圆柱的体积最大为 ,因此材料利用率= ,选C.
点睛:空间几何体与球接、切问题的求解方法
求解球与棱柱、棱锥的接、切问题时,一般过球心及接、切点作截面,把空间问题转化为平面图形与圆的接、切问题,再利用平面几何知识寻找几何中元素间的关系求解.
【题型】单选题
【结束】
12
【题目】已知抛物线: 在点处的切线与曲线: 相切,若动直线分别与曲线、相交于、两点,则的最小值为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】据某气象中心观察和预测:发生于M地的沙尘暴一直向正南方向移动,其移动速度v(km/h)与时间t(h)的函数图象如图所示.过线段OC上一点T(t,0)作横轴的垂线l,梯形OABC在直线l左侧部分的面积即时间t(h)内沙尘暴所经过的路程s(km).
(1)当t=4时,求s的值;
(2)将s随t变化的规律用数学关系式表示出来;
(3)若N城位于M地正南方向,且距M地650 km,试判断这场沙尘暴是否会侵袭到N城,如果会,在沙尘暴发生后多长时间它将侵袭到N城?如果不会,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲袋中有1只黑球,3只红球;乙袋中有2只黑球,1只红球.
(1)从甲袋中任取两球,求取出的两球颜色不相同的概率;
(2)从甲,乙两袋中各取一球,求取出的两球颜色相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动点到定点的距离和它到直线的距离的比值为常数,记动点的轨迹为曲线.
(1)求曲线的方程;
(2)若直线与曲线相交于不同的两点, ,直线与曲线相交于不同的两点 ,且,求以, , , 为顶点的凸四边形的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=2sin(2x+ ),将f(x)图象上每个点的横坐标缩短为原来的一半之后成为函数y=g(x),则g(x)的图象的一条对称轴方程为( )
A.x=
B.x=
C.x=
D.x=
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com