精英家教网 > 高中数学 > 题目详情
16.已知集合A满足条件{1,2}⊆A?{1,2,3,4,5},则集合A的个数有(  )
A.8B.7C.4D.3

分析 根据集合包含关系的定义,将满足条件的集合逐个列出,即可得到本题答案.

解答 解:根据子集的定义,可得集合M必定含有1、2两个元素,而且含有3、4、5中的至多两个元素.
因此,满足条件{1,2}⊆M?{1,2,3,4,5}的集合M有:
{1,2},{1,2,3,},{1,2,4},{1,2,5},
{1,2,3,4},{1,2,3,5},{1,2,4,5},共7个.
故选:B.

点评 本题给出集合的包含关系,求满足条件集合M的个数.考查了集合的包含关系的理解和子集的概念等知识,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.复数z1=3+i,z2=1-i,则复数$\frac{{z}_{1}}{{z}_{2}}$的虚部为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知集合P={x|1<x≤2},Q={x|x2+x-2≤0},那么P∩Q等于(  )
A.B.{1}C.{x|-2≤x≤2}D.{x|1<x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.直线l1⊥l2,若l1的倾斜角为30°,则l2的倾斜角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设$f(x)=\frac{{{2^x}+a}}{{{2^{x+1}}+b}}$是定义在R上的奇函数(a,b为实常数).
(1)求a与b的值;
(2)证明函数f(x)的单调性并求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知定义域为R的函数f(x)满足f(-x)+f(x)=0,且当x>0时,f(x)=x2-2
(1)求函数f(x)的解析式;
(2)画出函数f(x)的图象并指出它的单调区间.
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.复数z满足(-1+i)z=(1+i)2,其中i为虚数单位,则复数z=1-i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.如图,三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M是AD的中点,则异面直线CM,AB所成的角是$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知$f(x)=1+\frac{a}{{3}^{x}+1}$(a为常数).
(Ⅰ)若f(x)为奇函数,求实数a的值;    
(Ⅱ)在Ⅰ的前提下,求f(x)的值域.

查看答案和解析>>

同步练习册答案