精英家教网 > 高中数学 > 题目详情

【题目】数列{an}的前n项和为Sn,且Sn=n(n+1)(n∈N*).

(1)求数列{an}的通项公式;

(2)若数列{bn}满足:,求数列{bn}的通项公式;

(3)令(n∈N*),求数列{cn}的前n项和Tn.

【答案】(1) ;(2);(3) .

【解析】

(1)数列{an}的前n项和为Sn,且Sn=n(n+1)(nN*),n≥2时,an=Sn﹣Sn﹣1.n=1时,a1=S1=2,即可得出;(2)数列{bn}满足:an=,可得n≥2时,an﹣an﹣1==2.n=1时,=a1=2,可得b1;(3)cn===n3n+n,令数列{n3n}的前n项和为An,利用错位相减法即可得出An.进而得出数列{cn}的前n项和Tn

(1)∵数列{an}的前n项和为Sn,且Sn=n(n+1)(nN*),

∴n≥2时,an=Sn﹣Sn﹣1=n(n+1)﹣n(n﹣1)=2n.

n=1时,a1=S1=2,对于上式也成立.

∴an=2n.

(2)数列{bn}满足:an=+++…+,∴n≥2时,an﹣an﹣1==2.

∴bn=2(3n+1).

n=1时,=a1=2,可得b1=8,对于上式也成立.

∴bn=2(3n+1).

(3)cn===n3n+n,

令数列{n3n}的前n项和为An,则An=3+2×32+3×33+…+n3n

∴3An=32+2×33+…+(n﹣1)3n+n3n+1

∴﹣2An=3+32+…+3n﹣n3n+1=﹣n3n+1

可得An=

数列{cn}的前n项和Tn=+

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知双曲线的左、右焦点分别为,实轴长为4,渐近线方程为,点N在圆上,则的最小值为( )

A. B. 5C. 6D. 7

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于函数,若在定义域内存在实数,满足,则称为“局部奇函数”.

(1)已知二次函数,试判断是否为“局部奇函数”?并说明理由;

(2)若是定义在区间上的“局部奇函数”,求实数的取值范围;

(3)若为定义域上的“局部奇函数”,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若关于x的方程有四个不等实根,且恒成立,则实数的最小值为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,离心率为,点在椭圆上,且的周长为

1)求椭圆的方程;

2)已知过点的直线与椭圆交于两点,点在直线上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是由)个整数按任意次序排列而成的数列,数列满足),按从大到小的顺序排列而成的数列,记.

1)证明:当为正偶数时,不存在满足)的数列.

2)写出),并用含的式子表示.

3)利用,证明:.(参考:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有次水下考古活动中,潜水员需潜入水深为30米的水底进行作业,其用氧量包含以下三个方面:①下潜时,平均速度为每分钟米,每分钟的用氧量为升;②水底作业需要10分钟,每分钟的用氧量为0.3升;③返回水面时,速度为每分钟米,每分钟用氧量为0.2升;设潜水员在此次考古活动中的总用氧量为升;

(1)将表示为的函数;

(2)若,求总用氧量的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,底面是直角梯形,其中为棱上的点,且

1)求证:平面

2)求二面角的余弦值;

3)设为棱上的点(不与重合),且直线与平面所成角的正弦值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆长轴长为短轴长的两倍,连结椭圆的四个顶点得到的菱形的面积为4,直线过点,且与椭圆相交于另一点.

1)求椭圆的方程;

2)若线段长为,求直线的倾斜角;

3)点在线段的垂直平分线上,且,求的值.

查看答案和解析>>

同步练习册答案