精英家教网 > 高中数学 > 题目详情
8.已知抛物线y=ax2过点A(1,2),则a=2,准线方程是$y=-\frac{1}{8}$.

分析 抛物线y=ax2过点A(1,2),代入计算,可得a,抛物线方程化为标准方程,即可得出结论.

解答 解:∵抛物线y=ax2过点A(1,2),
∴a=2,
抛物线方程为x2=$\frac{1}{2}$y,准线方程是$y=-\frac{1}{8}$.
故答案为2; $y=-\frac{1}{8}$

点评 本题考查抛物线的方程与性质,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知:$tanα=-\frac{1}{3}$,$cosβ=\frac{{\sqrt{5}}}{5}$,α,β∈(0,π).
(1)求tan(α+β)的值;
(2)求函数$f(x)=\sqrt{2}sin({x-α})+cos({x+β})$的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在报名的5名男生和3名女生中,选取5人参加数学竞赛,则男、女生都有的概率为$\frac{55}{56}$.(结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{1{+log}_{2}(2-x)(x≤0)}\\{f(x-2)+1(x>0)}\end{array}\right.$,则f(-2)+f(2)=(  )
A.3B.6C.5D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.与角$-\frac{π}{3}$终边相同的角是(  )
A.$\frac{5π}{6}$B.$\frac{π}{3}$C.$\frac{11π}{6}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.两条异面直线所成的角是60°,那么过空间任意一点与a,b都成60°的直线有几条(  )
A.1B.2C.4D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若f(x)=x2-2x-4lnx,则f′(x)<0的解集(  )
A.(0,+∞)B.(0,2)C.(0,2)∪(-∞,-1)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.原点关于x-2y+1=0的对称点的坐标为(  )
A.($\frac{4}{5}$,-$\frac{2}{5}$)B.(-$\frac{2}{5}$,$\frac{4}{5}$)C.($\frac{4}{5}$,$\frac{2}{5}$)D.($\frac{2}{5}$,-$\frac{4}{5}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,$b=\frac{{4\sqrt{3}}}{3}$,c=2$\sqrt{2}$,C=60°,则A等于(  )
A.150°B.75°C.105°D.75°或105°

查看答案和解析>>

同步练习册答案