精英家教网 > 高中数学 > 题目详情
2.已知实数x>0,y>0,且满足x+y=1,则$\frac{2}{x}$+$\frac{x}{y}$的最小值为2+2$\sqrt{2}$.

分析 实数x>0,y>0,且满足x+y=1,可得$\frac{2}{x}$+$\frac{x}{y}$=$\frac{2(x+y)}{y}+\frac{x}{y}$=2+$\frac{2y}{x}+\frac{x}{y}$,利用基本不等式的性质即可得出.

解答 解:∵实数x>0,y>0,且满足x+y=1,
则$\frac{2}{x}$+$\frac{x}{y}$=$\frac{2(x+y)}{y}+\frac{x}{y}$=2+$\frac{2y}{x}+\frac{x}{y}$≥2+2$\sqrt{\frac{2y}{x}•\frac{x}{y}}$=2+2$\sqrt{2}$,当且仅当x=$\sqrt{2}$y=2-$\sqrt{2}$时取等号.
故答案为:2+2$\sqrt{2}$.

点评 本题考查了基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.两个实习生每人加工一个零件,加工为一等品的概率分别为$\frac{2}{3}$和$\frac{1}{2}$,两个零件是否加工为一等品相互独立,则这两个零件中至少有一个加工为一等品的概率为(  )
A.$\frac{1}{6}$B.$\frac{5}{6}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设Sn是数列的前n项和,已知a1=3,an+1=2Sn+3(n∈N*).
(1)求数列{an}的通项公式;
(2)令bn=(2n-1)an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.要把半径为半圆形木料截成长方形,为了使长方形截面面积最大,则图中的α=(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{5π}{12}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}是以$\frac{1}{2}$为公差的等差数列,数列{bn}的前n项和为Sn,满足bn=2sin(πan+φ),φ∈(0,$\frac{π}{2}$),则Sn不可能是(  )
A.-1B.0C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设有序集合对(A,B)满足:A∪B={1,2,3,4,5,6,7,8},A∩B=∅,记CardA,CardB分别表示集合A、B的元素个数,则符合条件CardA∉A,CardB∉B的集合的对数是44.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在区间[-1,1]上随机取一个数x,x2的值介于0到$\frac{1}{4}$之间的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若五个数1、2、3、4、a的平均数为4,则这五个数的方差为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知f(x)=x(x-1)(x-2)…(x-100),在x=0处的导数值为(  )
A.0B.1002C.200D.100×99×…×2×1

查看答案和解析>>

同步练习册答案