精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|x2-2x-3≥0},B={x|log2(x-1)<2},则(∁RA)∩B=(  )
A.(1,3)B.(-1,3)C.(3,5)D.(-1,5)

分析 由已知可得∁RA={x|x2-2x-3<0},解不等式求出∁RA,和集合B,结合集合交集运算的定义,可得答案.

解答 解:∵集合A={x|x2-2x-3≥0},
∴∁RA={x|x2-2x-3<0}=(-1,3),
又∵B={x|log2(x-1)<2}={x|0<x-1<4}=(1,5),
∴(∁RA)∩B=(1,3),
故选:A

点评 本题考查的知识点是集合的交集,并集,补集运算,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.已知正项等比数列{an}满足:a7=a6+2a5,若存在两项am,an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,则$\frac{1}{m}$+$\frac{5}{n}$的最小值为(  )
A.$1+\frac{{\sqrt{5}}}{3}$B.$\frac{7}{4}$C.2D.$\frac{11}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.△ABC的内角A,B,C所对的边分别为a,b,c,且A,B,C成等差数列.命题p:“a,b,c成等比数列”;命题q:“△ABC是等边三角形”.则p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.将函数$f(x)=Asin(ωx+φ)(A>0,ω>0,-\frac{π}{2}<φ<\frac{π}{2})$图象上每一点的横坐标变为原来的2倍(纵坐标不变),然后把所得图象上的所有点沿x轴向右平移$\frac{π}{3}$个单位,得到函数y=2sinx的图象,则f(φ)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知z=($\sqrt{3}$-2sinx)+(2cosx+1)i(0<x<π)是纯虚数,则x等于(  )
A.$\frac{π}{3}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$或$\frac{2π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.小明同学制作了一个简易网球发射器,可用于帮忙练习定点接发球,如图2所示,网球场前半区,后半区总长为23.77米,球场的中间部分高度为0.914米,发射器固定安装在后半区离球网底部8米处中轴线上,发射方向与球网底部所在直线垂直.

为计算方便,球场长度和球网中间高度分别按24米和1米计算,发射器和网球大小均忽略不计,如图1所示,以发射器所在位置为坐标原点建立平面直角坐标系xOy,x轴在地平面上球场中轴线上,y轴垂直于地平面,单位长度为1米,已知若不考虑球网的影响,网球发射后的轨迹在方程y=$\frac{1}{2}$kx-$\frac{1}{80}$(1+k2)x2(k>0)表示的曲线上,其中k与发射方向有关,发射器的射程是指网球落地点的横坐标.
(Ⅰ)求发射器的最大射程;
(Ⅱ)请计算k在什么范围内,发射器能经球发过网(即网球飞行到球网正上空时,网球离地距离大于1米)?若发射器将网球发过球网后,在网球着地前,小明要想在前半区中轴线的正上空选择一个离地面2.55米处的击球点正好击中网球,试问击球点的横坐标a最大为多少?并请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}中,a1=2,a2n=an+1,a2n+1=n-an,则{an}的前100项和为(  )
A.1250B.1276C.1289D.1300

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)为偶函数,且当x<0时,f(x)=x-$\frac{1}{x}$,那么f(1)=(  )
A.0B.-2C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知直线l1:(m-2)x+(m+2)y+1=0,12:(m2-4)x-my+1-3=0.
(1)若l1∥l2,求:实数m的值;
(2)若l1⊥l2,求:实数m的值.

查看答案和解析>>

同步练习册答案