精英家教网 > 高中数学 > 题目详情

【题目】已知一圆经过点A(2,﹣3)和B(﹣2,﹣5),且圆心C在直线l:x﹣2y﹣3=0上,求此圆的方程.

【答案】解:(解法一)因为圆经过点A(2,﹣3),B(﹣2,﹣5),所以线段AB的中点D的坐标为(0,﹣4), 又 ,所以线段AB的垂直平分线的方程是y=﹣2x﹣4.
联立方程组 ,解得
所以,圆心坐标为C(﹣1,﹣2),半径r=|CA|=
所以,此圆的标准方程是(x+1)2+(y+2)2=10.
(解法二)解:设圆的标准方程为(x﹣a)2+(y﹣b)2=r2
由题意可得
由(2)﹣(1)可得2a+b+4=0,∵ ,∴
综上所述,圆的标准方程为(x+1)2+(y+2)2=10
【解析】(解法一):先求出线段AB的中垂线的方程,再把它和圆心C在直线l的方程联立方程组,求得圆心坐标,可得半径,从而求得此圆的方程. (解法二):待定系数法,设圆的标准方程为(x﹣a)2+(y﹣b)2=r2 , 由条件联立方程组求出a、b、r的值,从而求得此圆的方程.
【考点精析】根据题目的已知条件,利用圆的一般方程的相关知识可以得到问题的答案,需要掌握圆的一般方程的特点:(1)①x2和y2的系数相同,不等于0.②没有xy这样的二次项;(2)圆的一般方程中有三个特定的系数D、E、F,因之只要求出这三个系数,圆的方程就确定了;(3)、与圆的标准方程相比较,它是一种特殊的二元二次方程,代数特征明显,圆的标准方程则指出了圆心坐标与半径大小,几何特征较明显.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校为评估新教改对教学的影响,挑选了水平相当的两个平行班进行对比试验。甲班采用创新教法,乙班仍采用传统教法,一段时间后进行水平测试,成绩结果全部落在区间内(满分100分),并绘制频率分布直方图如右图,两个班人数均为60人,成绩80分及以上为优良。

根据以上信息填好下列联表,并判断出有多大的把握认为学生成绩优良与班级有关?

(2)以班级分层抽样,抽取成绩优良的5人参加座谈,现从5人中随机选3人来作书面发言,求发言人至少有2人来自甲班的概率。

(以下临界值及公式仅供参考

, )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了得到函数 的图象,只需把函数y=sin3x的图象(
A.向左平移
B.向左平移
C.向右平移
D.向右平移

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)= (x≠0,a>0)是奇函数,且当x>0时,f(x)有最小值2
(1)求f(x)的表达式;
(2)设数列{an}满足a1=2,2an+1=f(an)﹣an(n∈N*).令bn= ,求证bn+1=bn2
(3)求数列{bn}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l过点P(1,1),并与直线l1:x﹣y+3=0和l2:2x+y﹣6=0分别交于点A、B,若线段AB被点P平分. 求:
(1)直线l的方程;
(2)以O为圆心且被l截得的弦长为 的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读如图所示的程序框图,运行相应的程序,则输出的s值等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数f(x)=sin(2x+φ)的图象向左平移 个单位,所得到的函数图象关于y轴对称,则φ的一个可能取值为(
A.
B.
C.0
D.-

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若0<α< ,﹣ <β<0,cos( +α)= ,cos( )= ,则cos(α+ )=(
A.
B.﹣
C.
D.﹣

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知以点A(﹣1,2)为圆心的圆与直线m:x+2y+7=0相切,过点B(﹣2,0)的动直线l与圆A相交于M、N两点
(1)求圆A的方程.
(2)当|MN|=2 时,求直线l方程.

查看答案和解析>>

同步练习册答案