精英家教网 > 高中数学 > 题目详情
设a>1,b>1且ab-(a+b)=1,那么(  )
分析:由a>1,b>1且ab-(a+b)=1,利用基本不等式可得1+a+b=ab≤(
a+b
2
)2
,化为(a+b)2-4(a+b)-4≥0,解得即可.
解答:解:∵a>1,b>1且ab-(a+b)=1,
∴1+a+b=ab≤(
a+b
2
)2
,化为(a+b)2-4(a+b)-4≥0,
解得a+b≥2(
2
+1)

故选A.
点评:本题考查了基本不等式的性质和一元二次不等式的解法,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•江西模拟)函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f(x)′<0,设a=f(-1),b=f(
1
3
),c=f(4)
则(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)设a>1,b>1,且ab+a-b-10=0,a+b的最小值为m.记满足x2+y2≤m的所有整点的坐标为(xi,yi)(i=1,2,3,…,n),则
ni=1
|xiyi|
=
20
20

查看答案和解析>>

科目:高中数学 来源:江西模拟 题型:单选题

函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f(x)′<0,设a=f(-1),b=f(
1
3
),c=f(4)
则(  )
A.a<b<cB.c<b<aC.c<a<bD.b<c<a

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(北京卷解析版) 题型:解答题

设A是由m×n个实数组成的m行n列的数表,满足:每个数的绝对值不大于1,且所有数的和为零,记s(m,n)为所有这样的数表构成的集合。

对于A∈S(m,n),记ri(A)为A的第ⅰ行各数之和(1≤ⅰ≤m),Cj(A)为A的第j列各数之和(1≤j≤n):

记K(A)为∣r1(A)∣,∣R2(A)∣,…,∣Rm(A)∣,∣C1(A)∣,∣C2(A)∣,…,∣Cn(A)∣中的最小值。

(1)   对如下数表A,求K(A)的值;

1

1

-0.8

0.1

-0.3

-1

 

(2)设数表A∈S(2,3)形如

1

1

c

a

b

-1

 

求K(A)的最大值;

(3)给定正整数t,对于所有的A∈S(2,2t+1),求K(A)的最大值。

【解析】(1)因为

所以

(2)  不妨设.由题意得.又因为,所以

于是

    

所以,当,且时,取得最大值1。

(3)对于给定的正整数t,任给数表如下,

任意改变A的行次序或列次序,或把A中的每一个数换成它的相反数,所得数表

,并且,因此,不妨设

得定义知,

又因为

所以

     

     

所以,

对数表

1

1

1

-1

-1

 

综上,对于所有的的最大值为

 

查看答案和解析>>

同步练习册答案