ÏÂÁÐÃüÌ⣺
¢ÙÒÑÖªº¯Êýy=sin2x+acos2xµÄͼÏó¹ØÓÚÖ±Ïßx=-
¦Ð
3
¶Ô³Æ£¬ÔòaµÄֵΪ
3
3
£»
¢Úº¯Êýy=lgsin(
¦Ð
4
-2x)
µÄµ¥µ÷ÔöÇø¼äÊÇ[k¦Ð-
¦Ð
8
£¬ k¦Ð+
3¦Ð
8
)  (k¡ÊZ)
£»
¢ÛÉèp=sin15¡ã+cos15¡ã£¬q=sin16¡ã+cos16¡ã£¬r=p•q£¬Ôòp¡¢q¡¢rµÄ´óС¹ØϵÊÇp£¼q£¼r£»
¢ÜÒªµÃµ½º¯Êýy=cos2x-sin2xµÄͼÏó£¬Ð轫º¯Êýy=
2
cos2x
µÄͼÏóÏò×óƽÒÆ
¦Ð
8
¸öµ¥Î»£»
¢Ýº¯Êýf(x)=sin(2x+¦È)-
3
cos(2x+¦È)
ÊÇżº¯ÊýÇÒÔÚ[0£¬
¦Ð
4
]
ÉÏÊǼõº¯ÊýµÄ¦ÈµÄÒ»¸ö¿ÉÄÜÖµÊÇ
5¦Ð
6
£®ÆäÖÐÕýÈ·ÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
·ÖÎö£º¸ù¾ÝÕýÏÒº¯ÊýͼÏó¶Ô³ÆÐԵĹ«Ê½£¬¿ÉµÃ¢ÙÕýÈ·£»¸ù¾Ý¸´ºÏº¯ÊýµÄµ¥µ÷ÐÔ£¬½áºÏÕýÏÒº¯ÊýµÄµ¥µ÷Çø¼ä¿ÉµÃ¢Ú²»ÕýÈ·£»Óø¨Öú½Ç¹«Ê½½øÐкϲ¢£¬ÔٱȽϴóС£¬¿ÉµÃ¢ÛÕýÈ·£»Óø¨Öú½Ç¹«Ê½½øÐкϲ¢£¬ÔÙ½áºÏº¯ÊýͼÏóƽÒƵĹ«Ê½£¬¿ÉµÃ¢ÜÕýÈ·£»¸ù¾Ýy=Asin£¨¦Øx+¦Õ£©µÄÆæżÐԺ͵¥µ÷ÐÔ£¬¿ÉµÃ¢ÝÕýÈ·£®
½â´ð£º½â£º¶ÔÓÚ¢Ù£¬Èôº¯Êýy=sin2x+acos2xµÄͼÏó¹ØÓÚÖ±Ïßx=-
¦Ð
3
¶Ô³Æ£¬Ôòf£¨-
¦Ð
3
£©=¡À
1+a2
£¬
¼´sin£¨-
2¦Ð
3
£©+acos£¨-
2¦Ð
3
£©=
1+a2
£¬½âÖ®µÃa=
3
3
£¬¹Ê¢ÙÕýÈ·£»
¶ÔÓÚ¢Ú£¬ÒòΪsin(
¦Ð
4
-2x)
£¾0£¬ËùÒÔº¯ÊýµÄ¶¨ÒåÓòΪ£º{x|k¦Ð-
3¦Ð
8
£¼x£¼k¦Ð+
¦Ð
8
}£¬
º¯ÊýµÄÔöÇø¼äÊÇ(k¦Ð-
3¦Ð
8
£¬ k¦Ð-
¦Ð
8
)  (k¡ÊZ)
£¬¹Ê¢Ú²»ÕýÈ·£»
¶ÔÓÚ¢Û£¬¡ßp=sin15¡ã+cos15¡ã=
2
sin60¡ã=
6
£¬q=sin16¡ã+cos16¡ã=
2
sin61¡ã£¾
6
£¬
¡àp£¼q£¬¶øÇÒr=p•q£¾p£¬r=p•q£¾p£¬ËùÒÔp£¼q£¼r£¬¹Ê¢ÛÕýÈ·£»
¶ÔÓڢܣ¬½«º¯Êýy=
2
cos2x
µÄͼÏóÏò×óƽÒÆ
¦Ð
8
¸öµ¥Î»µÃµ½y=
2
cos(2x+
¦Ð
4
)
µÄͼÏó£»
¶øº¯Êýy=cos2x-sin2x=
2
cos£¨2x+
¦Ð
4
£©£¬ËùÒÔ¢ÜÕýÈ·£»
¶ÔÓڢݣ¬µ±¦È=
5¦Ð
6
ʱ£¬º¯Êýf(x)=sin(2x+
5¦Ð
6
)-
3
cos(2x+
5¦Ð
6
)
=2sin£¨2x+
¦Ð
2
£©=2cos2x£¬
Ç¡ºÃÔÚÔÚ[0£¬
¦Ð
4
]
ÉÏÊǼõº¯ÊýÇÒΪżº¯Êý£¬¹Ê¢ÝÕýÈ·£®
ËùÒÔÕýÈ·µÄÊǢ٢ۢܢݣ¬¹²4¸ö
¹ÊÑ¡D
µãÆÀ£º±¾ÌâÒÔÃüÌâµÄÕæ¼ÙÅжÏΪÔØÌ壬¿¼²éÁ˺¯Êýy=Asin£¨¦Øx+¦Õ£©µÄͼÏó±ä»»¡¢ÕýÏÒº¯ÊýµÄÆæżÐÔ¡¢ÆæżÐÔºÍͼÏóµÄ¶Ô³ÆÐÔµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔÚÏÂÁÐÃüÌâÖУº¢ÙÒÑÖªÁ½Ìõ²»Í¬Ö±Ïßm¡¢nÁ½Éϲ»Í¬Æ½Ãæ¦Á£¬¦Â£¬m¡Í¦Á£¬n¡Í¦Â£¬m¡Ín£¬Ôò¦Á¡Í¦Â£»¢Úº¯Êýy=sin£¨2x-
¦Ð
6
£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪµã£¨
¦Ð
3
£¬0£©£»¢ÛÈôº¯Êýf£¨x£©ÔÚRÉÏÂú×ãf£¨x+1£©=
1
f(x)
£¬Ôòf£¨x£©ÊÇÖÜÆÚΪ2µÄº¯Êý£»¢ÜÔÚ¡÷ABCÖУ¬Èô
OA
+
OB
=2
CO
£¬ÔòS¡÷ABC=S¡÷BOCÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¸ø³öÏÂÁÐÃüÌ⣺
¢Ù¡¢ÒÑÖªº¯Êýy=f£¨x£©£®£¨x¡ÊR£©£¬Ôòy=f£¨x-1£©µÄͼÏóÓëy=f£¨1-x£©µÄͼÏó¹ØÓÚÖ±Ïßx=1¶Ô³Æ£»
¢Ú¡¢É躯Êýf£¨x£©=cos£¨x+¦Õ£©£¬Ôò¡°f£¨x£©ÎªÅ¼º¯Êý¡±µÄ³äÒªÌõ¼þÊÇ¡°f'£¨0£©=0¡±£»
¢Û¡¢µÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Ôò¡°¹«±Èq£¾0¡±ÊÇ¡°ÊýÁÐ{Sn}µ¥Ôö¡±µÄ³äÒªÌõ¼þ£»
¢Ü¡¢ÊµÊýx£¬y£¬Ôò¡°
x-y¡Ý0
y¡Ý0
x+y¡Ü2
¡±ÊÇ¡°|2y-x|¡Ü2¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£®
ÆäÖÐÕæÃüÌâÓÐ
¢Ù¢Ú¢Ü
¢Ù¢Ú¢Ü
£¨Ð´³öÄãÈÏΪÕýÈ·µÄËùÓÐÕæÃüÌâµÄÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2011ÄêËÄ´¨Ê¡ÃàÑôÖÐѧ¸ß¿¼ÊÊÓ¦ÐÔ¼ì²âÊýѧÊÔ¾í£¨Àí¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£ºÌî¿ÕÌâ

¸ø³öÏÂÁÐÃüÌ⣺
¢Ù¡¢ÒÑÖªº¯Êýy=f£¨x£©£®£¨x¡ÊR£©£¬Ôòy=f£¨x-1£©µÄͼÏóÓëy=f£¨1-x£©µÄͼÏó¹ØÓÚÖ±Ïßx=1¶Ô³Æ£»
¢Ú¡¢É躯Êýf£¨x£©=cos£¨x+¦Õ£©£¬Ôò¡°f£¨x£©ÎªÅ¼º¯Êý¡±µÄ³äÒªÌõ¼þÊÇ¡°f'£¨0£©=0¡±£»
¢Û¡¢µÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Ôò¡°¹«±Èq£¾0¡±ÊÇ¡°ÊýÁÐ{Sn}µ¥Ôö¡±µÄ³äÒªÌõ¼þ£»
¢Ü¡¢ÊµÊýx£¬y£¬Ôò¡°¡±ÊÇ¡°|2y-x|¡Ü2¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£®
ÆäÖÐÕæÃüÌâÓР   £¨Ð´³öÄãÈÏΪÕýÈ·µÄËùÓÐÕæÃüÌâµÄÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

¸ø³öÏÂÁÐÃüÌ⣺
¢Ù¡¢ÒÑÖªº¯Êýy=f£¨x£©£®£¨x¡ÊR£©£¬Ôòy=f£¨x-1£©µÄͼÏóÓëy=f£¨1-x£©µÄͼÏó¹ØÓÚÖ±Ïßx=1¶Ô³Æ£»
¢Ú¡¢É躯Êýf£¨x£©=cos£¨x+¦Õ£©£¬Ôò¡°f£¨x£©ÎªÅ¼º¯Êý¡±µÄ³äÒªÌõ¼þÊÇ¡°f'£¨0£©=0¡±£»
¢Û¡¢µÈ±ÈÊýÁÐ{an}µÄÇ°nÏîºÍΪSn£¬Ôò¡°¹«±Èq£¾0¡±ÊÇ¡°ÊýÁÐ{Sn}µ¥Ôö¡±µÄ³äÒªÌõ¼þ£»
¢Ü¡¢ÊµÊýx£¬y£¬Ôò¡°Êýѧ¹«Ê½¡±ÊÇ¡°|2y-x|¡Ü2¡±µÄ³ä·Ö²»±ØÒªÌõ¼þ£®
ÆäÖÐÕæÃüÌâÓÐ________£¨Ð´³öÄãÈÏΪÕýÈ·µÄËùÓÐÕæÃüÌâµÄÐòºÅ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º2010Äêɽ¶«Ê¡¸ß¿¼ÊýѧģÄâÊÔ¾í1£¨ÎÄ¿Æ£©£¨½âÎö°æ£© ÌâÐÍ£º½â´ðÌâ

ÔÚÏÂÁÐÃüÌâÖУº¢ÙÒÑÖªÁ½Ìõ²»Í¬Ö±Ïßm¡¢nÁ½Éϲ»Í¬Æ½Ãæ¦Á£¬¦Â£¬m¡Í¦Á£¬n¡Í¦Â£¬m¡Ín£¬Ôò¦Á¡Í¦Â£»¢Úº¯Êýy=sin£¨2x-£©Í¼ÏóµÄÒ»¸ö¶Ô³ÆÖÐÐÄΪµã£¨£¬0£©£»¢ÛÈôº¯Êýf£¨x£©ÔÚRÉÏÂú×ãf£¨x+1£©=£¬Ôòf£¨x£©ÊÇÖÜÆÚΪ2µÄº¯Êý£»¢ÜÔÚ¡÷ABCÖУ¬Èô£¬ÔòS¡÷ABC=S¡÷BOCÆäÖÐÕýÈ·ÃüÌâµÄÐòºÅΪ    £®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸