精英家教网 > 高中数学 > 题目详情

【题目】AB是☉O的直径,点C是☉O上的动点(点C不与A,B重合),过动点C的直线VC垂直于☉O所在的平面,D,E分别是VA,VC的中点,则下列结论中正确的是________(填写正确结论的序号).

(1)直线DE∥平面ABC.

(2)直线DE⊥平面VBC.

(3)DE⊥VB.

(4)DE⊥AB.

【答案】(1)(2)(3)

【解析】因为AB是☉O的直径,点C是☉O上的动点(点C不与A,B重合),所以AC⊥BC,

因为VC垂直于☉O所在的平面,所以AC⊥VC,又BC∩VC=C,所以AC⊥平面VBC.

因为D,E分别是VA,VC的中点,所以DE∥AC,又DE平面ABC,AC平面ABC,所以DE∥平面ABC,DE⊥平面VBC,DE⊥VB,DE与AB所成的角为∠BAC是锐角,故DE⊥AB不成立.由以上分析可知(1)(2)(3)正确,故填(1)(2)(3).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图在边长为2a的正方形ABCDEF分别为ABBC的中点沿图中虚线将3个三角形折起使点ABC重合重合后记为点P.

(1)折起后形成的几何体是什么几何体

(2)这个几何体共有几个面每个面的三角形有何特点

(3)每个面的三角形面积为多少

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各对直线不互相垂直的是 (  )

A. l1的倾斜角为120°,l2过点P(1,0),Q(4, )

B. l1的斜率为-l2过点P(1,1),Q

C. l1的倾斜角为30°,l2过点P(3, )Q(42)

D. l1过点M(1,0),N(4,-5),l2过点P(-6,0),Q(-1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线a,b和平面M,N,且a⊥M,则下列说法正确的是 (  )

A. b∥Mb⊥a B. b⊥ab∥M

C. N⊥Ma∥N D. aNM∩N≠

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直角梯形ABCD中,BCDCAEDCMN分别是ADBE的中点,将三角形ADE沿AE折起,则下列说法正确的是________(填序号).

①不论D折至何位置(不在平面ABC内),都有MN∥平面DEC;②不论D折至何位置,都有MNAE;③不论D折至何位置(不在平面ABC内),都有MNAB;④在折起过程中,一定存在某个位置,使ECAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ax2﹣2lnx,x∈(0,e],其中e是自然对数的底.
(1)若f(x)在x=1处取得极值,求a的值;
(2)求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣alnx(a∈R)
(1)若函数f(x)在x=2处的切线方程为y=x+b,求a,b的值;
(2)讨论方程f(x)=0解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在x0(a<x0<b),满足f(x0)= ,则称函数y=f(x)是[a,b]上的“平均值函数”,x0是它的一个均值点.例如y=|x|是[﹣2,2]上的平均值函数,0就是它的均值点.若函数f(x)=x2﹣mx﹣1是[﹣1,1]上的“平均值函数”,则实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国有个名句“运筹帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹,古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式,如表
表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位用横式表示,以此类推,例如6613用算筹表示就是: ,则9117用算筹可表示为(
A.
B.
C.
D.

查看答案和解析>>

同步练习册答案