精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

(1)恒成立的实数的最大值

(2)设,且满足,求证:.

【答案】1;(2)见解析

【解析】

(1)化为分段函数,根据函数单调性即可求出函数的最小值,即可求出的值,

(2)由m>0,n>0,且,即:,化简≥2|m+2n|,由2|m+2n|=2(m+2n)=2(m+2n)4即可证得.

(1)已知函数.由题意得,恒成立,

即h(x)==2|x﹣1|﹣|x+1|=

显然,h(x)在(﹣∞,1]上单调递减,在(1,+∞)上单调递增,

∴h(x)min=h(1)=﹣2,∴t﹣2,即最大值=-2.

(2)由于m>0,n>0,且,即:

=+=2(|m+1|+|2n﹣1|)≥2|m+2n|,

∴2|m+2n|=2(m+2n)=2(m+2n)

当且仅当,即当n=,m=时取“=”,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某城市自2014年至2019年每年年初统计得到的人口数量如表所示.

年份

2014

2015

2016

2017

2018

2019

人数(单位:万)

2082

2135

2203

2276

2339

2385

(1)设第年的人口数量为(2014年为第1年),根据表中的数据,描述该城市人口数量和2014年至2018年每年该城市人口的增长数量的变化趋势;

(2)研究统计人员用函数拟合该城市的人口数量,其中的单位是年.假设2014年初对应的单位是万.设的反函数为,求的值(精确到0.1),并解释其实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是抛物线上任意一点,,且点为线段的中点.

(Ⅰ)求点的轨迹的方程;

(Ⅱ)若为点关于原点的对称点,过的直线交曲线 两点,直线交直线于点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某生鲜批发店每天从蔬菜生产基地以5元/千克购进某种绿色蔬菜,售价8元/千克,若每天下午4点以前所购进的绿色蔬菜没有售完,则对未售出的绿色蔬菜降价处理,以3元/千克出售.根据经验,降价后能够把剩余蔬菜全部处理完毕,且当天不再进货.该生鲜批发店整理了过往30天(每天下午4点以前)这种绿色蔬菜的日销售量(单位:千克)得到如下统计数据(视频率为概率)(注:x,y∈N*

每天下午4点前销售量

350

400

450

500

550

天数

3

9

x

y

2

(1)求在未来3天中,至少有1天下午4点前的销售量不少于450千克的概率.

(2)若该生鲜批发店以当天利润期望值为决策依据,当购进450千克比购进500千克的利润期望值大时,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中,EA⊥平面ABCD,四边形ABCD为等腰梯形,,且,AD=AE=1,∠ABC=60°,EF=AC,且EFAC.

(Ⅰ)证明:AB⊥CF;

(Ⅱ)求二面角B﹣EF﹣D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其图象关于直线对称,为了得到函数的图象,只需将函数的图象上的所有点( )

A.先向左平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变

B.先向右平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变

C.先向右平移个单位长度,再把所得各点横坐标伸长为原来的2倍,纵坐标保持不变

D.先向左平移个单位长度,再把所得各点横坐标缩短为原来的,纵坐标保持不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)若,求的最小值;

(2)若,求的单调区间;

(3)试比较的大小,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线),点的焦点的右侧,且的准线的距离是距离的3倍,经过点的直线与抛物线交于不同的两点,直线与直线交于点,经过点且与直线垂直的直线轴于点.

1)求抛物线的方程和的坐标;

2)判断直线与直线的位置关系,并说明理由;

3)椭圆的两焦点为,在椭圆外的抛物线上取一点,若的斜率分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数

1)若,试讨论函数的单调性;

2)若,试讨论的零点的个数;

查看答案和解析>>

同步练习册答案