精英家教网 > 高中数学 > 题目详情

(本小题满分14分)已知数列满足
(1)求证:数列为等差数列,并求数列通项公式;
(2) 数列的前项和为 ,令,求的最小值。

(1)作差再同除以,即可证明为等差数列,
(2)最小值为

解析试题分析:(1)
,即,                                        ……4分
数列是公差为1,首项为1等差数列.                                      ……5分
    
.                                                       ……7分
(2)=,                                       ……9分
因为,
所以单调递增,                                                           ……12分
, 的最小值为.                                              ……14分
考点:本小题主要考查等差数列的证明,数列求和.
点评:由递推关系式求通项公式时一般都再写一个作差,然后用累加、累乘或构造新数列解决问题.而数列求和也是高考必考的一个内容,要好好掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列{an}中,a2=1,前n项和为Sn,且
(1)求a1,a3
(2)求证:数列{an}为等差数列,并写出其通项公式;
(3)设,试问是否存在正整数p,q(其中1<p<q),使b1,bp,bq成等比数列?若存在,求出所有满足条件的数组(p,q);若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(满分13分)已知各项均为正数的数列是数列的前n项和,对任意,有2Sn=2
(Ⅰ)求常数p的值; 
(Ⅱ)求数列的通项公式;
(Ⅲ)记,()若数列从第二项起每一项都比它的前一项大,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知数列的相邻两项是关于的方程N的两根,且.
(1) 求数列的通项公式;
(2) 设是数列的前项和, 问是否存在常数,使得对任意N都成立,若存在, 求出的取值范围; 若不存在, 请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)a2,a5是方程x 2-12x+27=0的两根,数列{}是公差为正数的等差数列,数列{}的前n项和为,且=1-
(1)求数列{},{}的通项公式;
(2)记,求数列{}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列项和满足,等差数列满足
(1)求数列的通项公式
(2)设,数列的前项和为,问的最小正整数n是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义数列,(例如时,)满足,且当)时,.令
(1)写出数列的所有可能的情况;(5分)
(2)设,求(用的代数式来表示);(5分)
(3)求的最大值.(6分)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题12分)
已知数列的前项和满足,等差数列满足
(1)求数列的通项公式;
(2)设,数列的前项和为,问>的最小正整数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

本小题满分16分)设不等式组所表示的平面区域为,记内的格点(格点即横坐标和纵坐标均为整数的点)个数为
(1)求的值及的表达式;
(2)记,试比较的大小;若对于一切的正整数,总有成立,求实数的取值范围;
(3)设为数列的前项的和,其中,问是否存在正整数,使成立?若存在,求出正整数;若不存在,说明理由.

查看答案和解析>>

同步练习册答案