精英家教网 > 高中数学 > 题目详情

【题目】设f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的单调区间;
(2)已知f(x)在x=1处取得极大值,求实数a的取值范围.

【答案】
(1)

解:∵f(x)=xlnx﹣ax2+(2a﹣1)x,

∴g(x)=f′(x)=lnx﹣2ax+2a,x>0,

g′(x)= ﹣2a=

当a≤0,g′(x)>0恒成立,即可g(x)的单调增区间是(0,+∞);

当a>0,当x> 时,g′(x)<0,函数为减函数,

当0<x< ,g′(x)>0,函数为增函数,

∴当a≤0时,g(x)的单调增区间是(0,+∞);

当a>0时,g(x)的单调增区间是(0, ),单调减区间是( ,+∞)


(2)

解:∵f(x)在x=1处取得极大值,∴f′(1)=0,

①当a≤0时,f′(x)单调递增,

则当0<x<1时,f′(x)<0,f(x)单调递减,

当x>1时,f′(x)>0,f(x)单调递增,∴f(x)在x=1处取得极小值,不合题意,

②当0<a< 时, >1,由(1)知,f(x)在(0, )内单调递增,

当0<x<1时,f′(x)<0,当1<x< 时,f′(x)>0,

∴f(x)在(0,1)内单调递减,在(1, )内单调递增,即f(x)在x=1处取得极小值,不合题意.

③当a= 时, =1,f′(x)在(0,1)内单调递增,在(1,+∞)上单调递减,

则当x>0时,f′(x)≤0,f(x)单调递减,不合题意.

④当a> 时,0< <1,

<x<1时,f′(x)>0,f(x)单调递增,当x>1时,f′(x)<0,f(x)单调递减,

∴当x=1时,f(x)取得极大值,满足条件.

综上实数a的取值范围是a>


【解析】(1)先求出g(x)=f′(x)的解析式,然后求函数的导数g′(x),利用函数单调性和导数之间的关系即可求g(x)的单调区间;(2)分别讨论a的取值范围,根据函数极值的定义,进行验证即可得到结论.;本题主要考查导数的综合应用,考查函数的单调性,极值和导数的关系,要求熟练掌握利用导数研究函数的单调性、极值与最值、把问题等价转化等是解题的关键.综合性较强,难度较大.
【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减),还要掌握函数的极值与导数(求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值)的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,左顶点为,过原点且斜率不为0的直线与椭圆交于两点,其中点在第二象限,过点轴的垂线交于点

⑴求椭圆的标准方程;

⑵当直线的斜率为时,求的面积;

⑶试比较大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆 1(a> )的右焦点为F,右顶点为A,已知 ,其中O为原点,e为椭圆的离心率.
(1)求椭圆的方程;
(2)设过点A的直线l与椭圆交于B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H,若BF⊥HF,且∠MOA=∠MAO,求直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数处有极值.

(1)求的值;

(2)求的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在学习过程中,我们通常遇到相似的问题.

(1)已知动点为圆 外一点,过引圆的两条切线. 为切点,若,求动点的轨迹方程;

(2)若动点为椭圆 外一点,过引椭圆的两条切线. 为切点,若,猜想动点的轨迹是什么,请给出证明并求出动点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+bx,则“b<0”是“f(f(x))的最小值与f(x)的最小值相等”的(  )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若处取得极值,求的值;

(2)求在区间上的最小值;

(3)在(1)的条件下,若,求证:当,恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列的前项和为,且

(1)证明:是等比数列;

(2)求数列的通项公式,并求出n为何值时,取得最小值,并说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数在同一个周期内,当y取最大值1,当时,y取最小值﹣1

(1)求函数的解析式y=f(x)

(2)函数y=sinx的图象经过怎样的变换可得到y=f(x)的图象?

(3)若函数f(x)满足方程f(x)=a(0<a<1),求在[0,2π]内的所有实数根之和.

查看答案和解析>>

同步练习册答案